基于QPSO策略的车联网交通流预测新方法

De-gan Zhang, Jing-yu Du, Ting Zhang, Hong-rui Fan
{"title":"基于QPSO策略的车联网交通流预测新方法","authors":"De-gan Zhang, Jing-yu Du, Ting Zhang, Hong-rui Fan","doi":"10.1109/SmartIoT49966.2020.00024","DOIUrl":null,"url":null,"abstract":"We propose a new method of traffic flow forecasting based on quantum particle swarm optimization strategy (QPSO) for Internet of Vehicles (IOV). Establish a corresponding model based on the characteristics of the traffic flow data. The genetic simulated annealing method is applied to the quantum particle swarm method to obtain the optimized initial cluster center, and is applied to the parameter optimization of the radial basis neural network prediction model. The function approximation of radial basis neural network can be used to obtain the required data. In addition, in order to compare the performance of the methods, a comparison study with other related methods such as QPSO-RBF is also performed. Our method can reduce prediction errors and get better and more stable prediction results.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Method of Traffic Flow Forecasting Based on QPSO Strategy for Internet of Vehicles\",\"authors\":\"De-gan Zhang, Jing-yu Du, Ting Zhang, Hong-rui Fan\",\"doi\":\"10.1109/SmartIoT49966.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method of traffic flow forecasting based on quantum particle swarm optimization strategy (QPSO) for Internet of Vehicles (IOV). Establish a corresponding model based on the characteristics of the traffic flow data. The genetic simulated annealing method is applied to the quantum particle swarm method to obtain the optimized initial cluster center, and is applied to the parameter optimization of the radial basis neural network prediction model. The function approximation of radial basis neural network can be used to obtain the required data. In addition, in order to compare the performance of the methods, a comparison study with other related methods such as QPSO-RBF is also performed. Our method can reduce prediction errors and get better and more stable prediction results.\",\"PeriodicalId\":399187,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT49966.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于量子粒子群优化策略(QPSO)的车联网交通流预测方法。根据交通流数据的特点,建立相应的模型。将遗传模拟退火方法应用于量子粒子群方法中获得优化的初始聚类中心,并将其应用于径向基神经网络预测模型的参数优化。利用径向基神经网络的函数逼近可以得到所需的数据。此外,为了比较方法的性能,还与QPSO-RBF等其他相关方法进行了比较研究。该方法可以减少预测误差,得到更好、更稳定的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Method of Traffic Flow Forecasting Based on QPSO Strategy for Internet of Vehicles
We propose a new method of traffic flow forecasting based on quantum particle swarm optimization strategy (QPSO) for Internet of Vehicles (IOV). Establish a corresponding model based on the characteristics of the traffic flow data. The genetic simulated annealing method is applied to the quantum particle swarm method to obtain the optimized initial cluster center, and is applied to the parameter optimization of the radial basis neural network prediction model. The function approximation of radial basis neural network can be used to obtain the required data. In addition, in order to compare the performance of the methods, a comparison study with other related methods such as QPSO-RBF is also performed. Our method can reduce prediction errors and get better and more stable prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Intelligent Topology Optimization Strategy Toward the Robust Onion-like Structure Analysis on the Usage of Topic Model with Background Knowledge inside Discussion Activity in Industrial Engineering Context Accurate Underwater Localization Through Phase Difference A Cyber-Physical System Approach for Predictive Maintenance Research of Power Energy Management Control Strategy with IOT in NZEB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1