基于神经形态计算和自学习算法的自主视频监控异常综合研究与检测

Akansha Bhargava, Gauri Salunkhe, Kishor S. Bhosale
{"title":"基于神经形态计算和自学习算法的自主视频监控异常综合研究与检测","authors":"Akansha Bhargava, Gauri Salunkhe, Kishor S. Bhosale","doi":"10.1109/ICCDW45521.2020.9318650","DOIUrl":null,"url":null,"abstract":"Video Analytics is widely applied in the field of surveillance. Recently, with the advent in technology deep learning network has been incorporated in the video action detection. Traditional CNN is employed to extract 2D spatial features of image but for video it is required to exploit CNN for temporal information. In this work we propose to do instance segmentation in video bytes and predicting the actions with the help of deep learning. And, we aim to present an implementation of an algorithm that can depict anomalies in real time video feed.","PeriodicalId":282429,"journal":{"name":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive Study and Detection of Anomalies for Autonomous Video Surveillance Using Neuromorphic Computing and Self Learning Algorithm\",\"authors\":\"Akansha Bhargava, Gauri Salunkhe, Kishor S. Bhosale\",\"doi\":\"10.1109/ICCDW45521.2020.9318650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video Analytics is widely applied in the field of surveillance. Recently, with the advent in technology deep learning network has been incorporated in the video action detection. Traditional CNN is employed to extract 2D spatial features of image but for video it is required to exploit CNN for temporal information. In this work we propose to do instance segmentation in video bytes and predicting the actions with the help of deep learning. And, we aim to present an implementation of an algorithm that can depict anomalies in real time video feed.\",\"PeriodicalId\":282429,\"journal\":{\"name\":\"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCDW45521.2020.9318650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDW45521.2020.9318650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频分析在监控领域有着广泛的应用。近年来,随着技术的发展,深度学习网络已被应用到视频动作检测中。传统的CNN是用来提取图像的二维空间特征,而对于视频则需要利用CNN来提取时间信息。在这项工作中,我们建议在视频字节中进行实例分割,并在深度学习的帮助下预测动作。并且,我们的目标是提出一种算法的实现,可以描述实时视频馈送中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Study and Detection of Anomalies for Autonomous Video Surveillance Using Neuromorphic Computing and Self Learning Algorithm
Video Analytics is widely applied in the field of surveillance. Recently, with the advent in technology deep learning network has been incorporated in the video action detection. Traditional CNN is employed to extract 2D spatial features of image but for video it is required to exploit CNN for temporal information. In this work we propose to do instance segmentation in video bytes and predicting the actions with the help of deep learning. And, we aim to present an implementation of an algorithm that can depict anomalies in real time video feed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sort X Consignment Sorter using an Omnidirectional Wheel Array for the Logistics Industry Evolving Authentication Design Consideration and BaaS Architecture for Internet of Biometric things Urban Flood Mapping with C-band RISAT-1 SAR Images: 2016 Flood Event of Bangalore City, India Design of an Affordable pH module for IoT Based pH Level Control in Hydroponics Applications Deep Learning Approach for Brain Tumor Detection and Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1