智能电网中的深度强化学习:进展与展望

Amila Akagic, I. Džafić
{"title":"智能电网中的深度强化学习:进展与展望","authors":"Amila Akagic, I. Džafić","doi":"10.1109/ICAT54566.2022.9811131","DOIUrl":null,"url":null,"abstract":"The combination of reinforcement learning and deep learning has shown some remarkable results in many scientific fields. Deep reinforcement learning algorithms are particularly good at understanding and modeling adaptive decision-making in dynamic environments. In recent years, this concept has been successfully applied to smart grids. In this paper, we provide a brief introduction to the concepts of reinforcement and deep reinforcement learning to the power system engineers and present research progress and prospects in the field. Additionally, we identify smart grid engineering domains that need extensive pattern-based modeling as being particularly suitable for deep reinforcement learning.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning in Smart Grid: Progress and Prospects\",\"authors\":\"Amila Akagic, I. Džafić\",\"doi\":\"10.1109/ICAT54566.2022.9811131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of reinforcement learning and deep learning has shown some remarkable results in many scientific fields. Deep reinforcement learning algorithms are particularly good at understanding and modeling adaptive decision-making in dynamic environments. In recent years, this concept has been successfully applied to smart grids. In this paper, we provide a brief introduction to the concepts of reinforcement and deep reinforcement learning to the power system engineers and present research progress and prospects in the field. Additionally, we identify smart grid engineering domains that need extensive pattern-based modeling as being particularly suitable for deep reinforcement learning.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

强化学习和深度学习的结合在许多科学领域已经显示出一些显著的成果。深度强化学习算法特别擅长理解和建模动态环境中的自适应决策。近年来,这一概念已成功应用于智能电网。本文向电力系统工程师简要介绍了强化和深度强化学习的概念,并介绍了该领域的研究进展和展望。此外,我们确定需要广泛的基于模式的建模的智能电网工程领域特别适合深度强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning in Smart Grid: Progress and Prospects
The combination of reinforcement learning and deep learning has shown some remarkable results in many scientific fields. Deep reinforcement learning algorithms are particularly good at understanding and modeling adaptive decision-making in dynamic environments. In recent years, this concept has been successfully applied to smart grids. In this paper, we provide a brief introduction to the concepts of reinforcement and deep reinforcement learning to the power system engineers and present research progress and prospects in the field. Additionally, we identify smart grid engineering domains that need extensive pattern-based modeling as being particularly suitable for deep reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology to Develop Extended Reality Applications for Exhibition Spaces in Museums Prediction of cardiovascular disease Mitigating Power Peaks in Automotive Power Networks by Exploitation of Flexible Loads Volt-Var Control for Smart Cities with Integrated Public Transportation System Graph Theory as an Engine for Real-Time Advanced Distribution Management System Enhancements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1