用于冗余机械臂视觉运动映射的自适应伸展模型

J. L. Pedreño-Molina, A. Guerrero-González, J. López-Coronado
{"title":"用于冗余机械臂视觉运动映射的自适应伸展模型","authors":"J. L. Pedreño-Molina, A. Guerrero-González, J. López-Coronado","doi":"10.1109/ROMOCO.2002.1177144","DOIUrl":null,"url":null,"abstract":"Most of the control algorithms for robotic reaching and grasping tasks, from visual and motor perception systems, are based on feedback systems. They assume a limitation for the performance of remote reaching applications and for the robustness of the system. In this paper, a very robust learning-based model for visual-motor coordination is presented. This architecture is based on how the human system projects the sensorial stimulus onto motor joints and how it sends motor commands to each arm in open-loop mode, starting from the initial, visual and proprioceptive information. The self-organization characteristics of this model allow one to obtain good results on robustness, flexibility and adaptability in both simulation and real robotic platforms. Coordination of the information from different spatial representations is based on the vector associative maps algorithms, developed in CNS (Boston University). Indeed, compatibility requirements and system adaptation capability give a solution for the control of redundant systems.","PeriodicalId":213750,"journal":{"name":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive reaching model for visual-motor mapping applied to redundant robotic arms\",\"authors\":\"J. L. Pedreño-Molina, A. Guerrero-González, J. López-Coronado\",\"doi\":\"10.1109/ROMOCO.2002.1177144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the control algorithms for robotic reaching and grasping tasks, from visual and motor perception systems, are based on feedback systems. They assume a limitation for the performance of remote reaching applications and for the robustness of the system. In this paper, a very robust learning-based model for visual-motor coordination is presented. This architecture is based on how the human system projects the sensorial stimulus onto motor joints and how it sends motor commands to each arm in open-loop mode, starting from the initial, visual and proprioceptive information. The self-organization characteristics of this model allow one to obtain good results on robustness, flexibility and adaptability in both simulation and real robotic platforms. Coordination of the information from different spatial representations is based on the vector associative maps algorithms, developed in CNS (Boston University). Indeed, compatibility requirements and system adaptation capability give a solution for the control of redundant systems.\",\"PeriodicalId\":213750,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2002.1177144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2002.1177144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数机器人到达和抓取任务的控制算法,从视觉和运动感知系统,是基于反馈系统。它们假定远程到达应用程序的性能和系统的健壮性受到限制。本文提出了一种鲁棒的基于学习的视觉-运动协调模型。这种结构是基于人体系统如何将感觉刺激投射到运动关节上,以及它如何以开环模式向每个手臂发送运动命令,从初始的视觉和本体感受信息开始。该模型的自组织特性使其在仿真和实际机器人平台上都具有良好的鲁棒性、灵活性和适应性。来自不同空间表示的信息的协调是基于CNS(波士顿大学)开发的向量关联地图算法。实际上,兼容性要求和系统自适应能力为冗余系统的控制提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive reaching model for visual-motor mapping applied to redundant robotic arms
Most of the control algorithms for robotic reaching and grasping tasks, from visual and motor perception systems, are based on feedback systems. They assume a limitation for the performance of remote reaching applications and for the robustness of the system. In this paper, a very robust learning-based model for visual-motor coordination is presented. This architecture is based on how the human system projects the sensorial stimulus onto motor joints and how it sends motor commands to each arm in open-loop mode, starting from the initial, visual and proprioceptive information. The self-organization characteristics of this model allow one to obtain good results on robustness, flexibility and adaptability in both simulation and real robotic platforms. Coordination of the information from different spatial representations is based on the vector associative maps algorithms, developed in CNS (Boston University). Indeed, compatibility requirements and system adaptation capability give a solution for the control of redundant systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved sliding mode robot control-a fuzzy approach Bayes parameter identification for optimal control of robots Two motion planning approaches for six-legged robot Redundant manipulators motion through singularities based on modified Jacobian method Motion planning in endogenous configuration space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1