利用深度学习实现半自动双心室分割的自动化

S. C. Kushbu, T. Inbamalar
{"title":"利用深度学习实现半自动双心室分割的自动化","authors":"S. C. Kushbu, T. Inbamalar","doi":"10.1166/jmihi.2022.3927","DOIUrl":null,"url":null,"abstract":"Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to\n meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers\n to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm,\n namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid\n leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our\n algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and\n Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC\n metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles\n of CMRI than previous methods.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation\",\"authors\":\"S. C. Kushbu, T. Inbamalar\",\"doi\":\"10.1166/jmihi.2022.3927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to\\n meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers\\n to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm,\\n namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid\\n leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our\\n algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and\\n Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC\\n metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles\\n of CMRI than previous methods.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2022.3927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心室分割或心脏磁共振成像(CMRI)圈定对于获得心脏收缩功能具有重要意义,而心脏收缩功能又可作为诊断心血管疾病(CVD)的输入。许多自动和半自动的方法发展以满足诊断心血管疾病的限制。其中,半自动方法需要用户干预心室的描绘,这消耗时间,导致内部和内部的可观察性,与手动描绘一样。因此,大多数研究人员建议采用自动方法来解决上述问题。我们提出了基于显著性的主动轮廓U-Net (SACU-Net)用于自动双心室分割,该方法在接近金标准方面超过了现有的最高发展方法。我们提出的算法采用了三种方案,即1;基于感兴趣区域(ROI)定位的显著性检测方法[j]。用于初始轮廓演化的dropout嵌入式U-net进行初始分割;基于局部-全局的区域活动轮廓(LGRAC),在绘制过程中对脑室进行微调,避免泄漏、合并。我们使用MICCAI 2017的自动心脏诊断挑战(ACDC)、MICCAI 2012的右心室分割挑战(RVSC)和MICCAI 2009的Sunny Brook (SB)三个数据集来测试我们的算法在不同扫描仪分辨率和协议下的适应性。分别使用100张和50张ACDC的CMRI图像进行训练和测试,得到左心室腔(LVC)、左心室心肌(LVM)和右心室腔(RVC)的平均Dice系数(DC)分别为0.963、0.934和0.948。分别使用32张和16张RVSC的CMRI图像进行制备和实验,rvc的平均DC metric为0.95;使用30张和15张SB的CMRI图像进行制备和实验,LVC和LVM的平均DC metric分别为0.96和0.97。豪斯多夫距离(HD)指标也被计算,以了解所建议的描绘心室的距离,以达到金标准。上述结果表明,我们提出的SACU-Net在CMRI脑室分割方面比以前的方法具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation
Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm, namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles of CMRI than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application Value of CT Perfusion Imaging in Patients with Posterior Circulation Hyperacute Cerebral Infarction An Operative Acute Brain Tumor Recognition by Jointure Inward Unswerving Probabilistic Neural Network Classifier Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation Improved Wavelet Filter Bank Selection for Effective Feature Extraction in Alzheimer Classification An Efficient Approach to Detect Meningioma Brain Tumor Using Adaptive Neuro Fuzzy Inference System Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1