科霍宁自组织图谱在不同剂量海马神经元药物诱导的Ca2+反应中的应用

A. Saxena, Vaibhav Dhyani, S. Jana, L. Giri
{"title":"科霍宁自组织图谱在不同剂量海马神经元药物诱导的Ca2+反应中的应用","authors":"A. Saxena, Vaibhav Dhyani, S. Jana, L. Giri","doi":"10.1109/NCC48643.2020.9056031","DOIUrl":null,"url":null,"abstract":"Recent advancement in neuronal imaging leads to accurate measurement of cellular activity after treatment with drugs. However, neuronal activity obtained by dynamic imaging reveals complex pattern with time, the prediction of activity level corresponding to drug level remains challenging. In this context, we apply self organizing map (SOM) to estimate the drug dose according to neuronal activity level in four different time windows. Here we cluster the neuronal activity pattern and classify the activity pattern with drug dose. We also implement supervised SOM to predict the drug dose corresponding to activity pattern. The advantage of using SOM is that it is a great visualization and prediction tool to analyze high-dimensional data onto a low-dimensional (1D or 2D) SOM grid. Such computaional tool can be used to classify unknown neuronal responses according to the extent of drug level present in the system.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of kohonen-self organizing map to cluster drug induced Ca2+ response in hippocampal neurons at different drug dose\",\"authors\":\"A. Saxena, Vaibhav Dhyani, S. Jana, L. Giri\",\"doi\":\"10.1109/NCC48643.2020.9056031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancement in neuronal imaging leads to accurate measurement of cellular activity after treatment with drugs. However, neuronal activity obtained by dynamic imaging reveals complex pattern with time, the prediction of activity level corresponding to drug level remains challenging. In this context, we apply self organizing map (SOM) to estimate the drug dose according to neuronal activity level in four different time windows. Here we cluster the neuronal activity pattern and classify the activity pattern with drug dose. We also implement supervised SOM to predict the drug dose corresponding to activity pattern. The advantage of using SOM is that it is a great visualization and prediction tool to analyze high-dimensional data onto a low-dimensional (1D or 2D) SOM grid. Such computaional tool can be used to classify unknown neuronal responses according to the extent of drug level present in the system.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近在神经元成像方面的进展导致了药物治疗后细胞活动的精确测量。然而,动态成像获得的神经元活动随着时间的变化呈现出复杂的模式,预测与药物水平相对应的活动水平仍然具有挑战性。在这种情况下,我们应用自组织图(SOM)根据四个不同时间窗的神经元活动水平估计药物剂量。这里我们对神经元的活动模式进行聚类,并根据药物剂量对活动模式进行分类。我们还采用监督SOM来预测与活性模式相对应的药物剂量。使用SOM的优点是,它是一个很好的可视化和预测工具,可以将高维数据分析到低维(1D或2D) SOM网格上。这种计算工具可以根据系统中存在的药物水平的程度对未知的神经元反应进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of kohonen-self organizing map to cluster drug induced Ca2+ response in hippocampal neurons at different drug dose
Recent advancement in neuronal imaging leads to accurate measurement of cellular activity after treatment with drugs. However, neuronal activity obtained by dynamic imaging reveals complex pattern with time, the prediction of activity level corresponding to drug level remains challenging. In this context, we apply self organizing map (SOM) to estimate the drug dose according to neuronal activity level in four different time windows. Here we cluster the neuronal activity pattern and classify the activity pattern with drug dose. We also implement supervised SOM to predict the drug dose corresponding to activity pattern. The advantage of using SOM is that it is a great visualization and prediction tool to analyze high-dimensional data onto a low-dimensional (1D or 2D) SOM grid. Such computaional tool can be used to classify unknown neuronal responses according to the extent of drug level present in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Way Optimization Framework for Clustering of Images using Weighted Tensor Nuclear Norm Approximation Blind Channel Coding Identification of Convolutional encoder and Reed-Solomon encoder using Neural Networks Classification of Autism in Young Children by Phase Angle Clustering in Magnetoencephalogram Signals A Fusion-Based Approach to Identify the Phases of the Sit-to-Stand Test in Older People STPM Based Performance Analysis of Finite-Sized Differential Serial FSO Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1