动态信号生成建模的时变归一化流程

Anubhab Ghosh, Aleix Espuña Fontcuberta, M. Abdalmoaty, S. Chatterjee
{"title":"动态信号生成建模的时变归一化流程","authors":"Anubhab Ghosh, Aleix Espuña Fontcuberta, M. Abdalmoaty, S. Chatterjee","doi":"10.23919/eusipco55093.2022.9909640","DOIUrl":null,"url":null,"abstract":"We develop a time-varying normalizing flow (TVNF) for explicit generative modeling of dynamical signals. Being explicit, it can generate samples of dynamical signals, and compute the likelihood of a (given) dynamical signal sample. In the proposed model, signal flow in the layers of the normalizing flow is a function of time, which is realized using an encoded representation that is the output of a recurrent neural network (RNN). Given a set of dynamical signals, the parameters of TVNF are learned according to maximum-likelihood approach in conjunction with gradient descent (backpropagation). Use of the proposed model is illustrated for a toy application scenario - maximum-likelihood based speech-phone classification task.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-varying Normalizing Flow for Generative Modeling of Dynamical Signals\",\"authors\":\"Anubhab Ghosh, Aleix Espuña Fontcuberta, M. Abdalmoaty, S. Chatterjee\",\"doi\":\"10.23919/eusipco55093.2022.9909640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a time-varying normalizing flow (TVNF) for explicit generative modeling of dynamical signals. Being explicit, it can generate samples of dynamical signals, and compute the likelihood of a (given) dynamical signal sample. In the proposed model, signal flow in the layers of the normalizing flow is a function of time, which is realized using an encoded representation that is the output of a recurrent neural network (RNN). Given a set of dynamical signals, the parameters of TVNF are learned according to maximum-likelihood approach in conjunction with gradient descent (backpropagation). Use of the proposed model is illustrated for a toy application scenario - maximum-likelihood based speech-phone classification task.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种时变归一化流(TVNF)用于动态信号的显式生成建模。它是显式的,可以生成动态信号的样本,并计算(给定)动态信号样本的似然。在提出的模型中,归一化流层中的信号流是时间的函数,这是使用循环神经网络(RNN)输出的编码表示来实现的。给定一组动态信号,根据最大似然方法结合梯度下降(反向传播)学习TVNF的参数。在基于最大似然的语音电话分类任务中,给出了该模型的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-varying Normalizing Flow for Generative Modeling of Dynamical Signals
We develop a time-varying normalizing flow (TVNF) for explicit generative modeling of dynamical signals. Being explicit, it can generate samples of dynamical signals, and compute the likelihood of a (given) dynamical signal sample. In the proposed model, signal flow in the layers of the normalizing flow is a function of time, which is realized using an encoded representation that is the output of a recurrent neural network (RNN). Given a set of dynamical signals, the parameters of TVNF are learned according to maximum-likelihood approach in conjunction with gradient descent (backpropagation). Use of the proposed model is illustrated for a toy application scenario - maximum-likelihood based speech-phone classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1