高湿层是高光谱红外探测器的盲点吗?-模型研究

M. Prange, Manfred Brath, S. Buehler
{"title":"高湿层是高光谱红外探测器的盲点吗?-模型研究","authors":"M. Prange, Manfred Brath, S. Buehler","doi":"10.5194/AMT-2021-48","DOIUrl":null,"url":null,"abstract":"Abstract. The ability of the hyperspectral satellite based passive infrared instrument IASI to resolve Elevated Moist Layers (EMLs) within the free troposphere is investigated. EMLs are strong moisture anomalies with significant impact on the radiative heating rate profile and are thought to be coupled to freezing level detrainment of convective cells in the tropics. Based on an exemplary EML testcase and forward modelled IASI observations, it is shown that if sufficient independent humidity and temperature information is available, EMLs do not pose a blind spot for passive satellite observations, contrary to what results of Stevens et al. (2017) have indicated. To further quantify the retrieval’s ability to capture moisture anomalies, a statistical evaluation of synthetic retrievals of 1438 clear sky tropical ocean short-range forecast model atmospheres is conducted. For this purpose, a framework for the identification and characterisation of moisture anomalies, a subset of which are EMLs, is introduced. The statistical evaluation shows that retrieved moisture anomalies are on average 37 % weaker and 28 % thicker than their true counterparts, which can be attributed to the retrieval smoothing error and the fact that rather weak and narrow moisture anomalies are most frequently missed by the retrieval. Smoothing is found to also constrain the magnitude of local heating rate extremes associated with moisture anomalies, particularly for the strongest anomalies that are found in the lower to mid troposphere. In total, about 72 % of moisture anomalies in the reference dataset are found by the retrieval. Below 5 km altitude, this fraction is only on the order of 30 %, which can be attributed to the fact that lower tropospheric moisture anomalies are typically more narrow and therefore tougher to retrieve than anomalies aloft. We conclude that the retrieval of lower to mid tropospheric moisture anomalies, in particular of EMLs, is possible when the anomaly is sufficiently strong and its thickness is at least on the order of about 1.5 km. This study sets the methodological basis, from a retrieval setup and evaluation perspective, to investigate real world EMLs in IASI observations in the future.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Are elevated moist layers a blind spot for hyperspectral infrared sounders? – A model study\",\"authors\":\"M. Prange, Manfred Brath, S. Buehler\",\"doi\":\"10.5194/AMT-2021-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The ability of the hyperspectral satellite based passive infrared instrument IASI to resolve Elevated Moist Layers (EMLs) within the free troposphere is investigated. EMLs are strong moisture anomalies with significant impact on the radiative heating rate profile and are thought to be coupled to freezing level detrainment of convective cells in the tropics. Based on an exemplary EML testcase and forward modelled IASI observations, it is shown that if sufficient independent humidity and temperature information is available, EMLs do not pose a blind spot for passive satellite observations, contrary to what results of Stevens et al. (2017) have indicated. To further quantify the retrieval’s ability to capture moisture anomalies, a statistical evaluation of synthetic retrievals of 1438 clear sky tropical ocean short-range forecast model atmospheres is conducted. For this purpose, a framework for the identification and characterisation of moisture anomalies, a subset of which are EMLs, is introduced. The statistical evaluation shows that retrieved moisture anomalies are on average 37 % weaker and 28 % thicker than their true counterparts, which can be attributed to the retrieval smoothing error and the fact that rather weak and narrow moisture anomalies are most frequently missed by the retrieval. Smoothing is found to also constrain the magnitude of local heating rate extremes associated with moisture anomalies, particularly for the strongest anomalies that are found in the lower to mid troposphere. In total, about 72 % of moisture anomalies in the reference dataset are found by the retrieval. Below 5 km altitude, this fraction is only on the order of 30 %, which can be attributed to the fact that lower tropospheric moisture anomalies are typically more narrow and therefore tougher to retrieve than anomalies aloft. We conclude that the retrieval of lower to mid tropospheric moisture anomalies, in particular of EMLs, is possible when the anomaly is sufficiently strong and its thickness is at least on the order of about 1.5 km. This study sets the methodological basis, from a retrieval setup and evaluation perspective, to investigate real world EMLs in IASI observations in the future.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/AMT-2021-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要研究了基于高光谱卫星的被动红外仪器IASI在自由对流层中分辨高湿层(EMLs)的能力。eml是强烈的水汽异常,对辐射加热速率剖面有重大影响,被认为与热带对流细胞的冻结水平减少有关。基于一个典型的EML测试案例和正演模拟的IASI观测,研究表明,如果有足够的独立湿度和温度信息,EML不会对被动卫星观测构成盲点,这与Stevens等人(2017)的结果相反。为了进一步量化反演捕获水汽异常的能力,对1438个晴空热带海洋短期预报模式大气的综合反演进行了统计评价。为此,介绍了一个识别和表征湿度异常的框架,其中一个子集是eml。统计评价表明,反演的水汽异常比真实异常平均弱37%,厚28%,这是由于反演的平滑误差和较弱和较窄的水汽异常最容易被反演忽略。研究还发现,平滑也限制了与湿度异常相关的局部升温速率极值的幅度,特别是对流层中下层发现的最强异常。总的来说,参考数据集中约72%的湿度异常被检索到。在海拔5公里以下,这一比例仅为30%左右,这可以归因于对流层低层湿度异常通常更窄,因此比高空异常更难以恢复。我们的结论是,当异常足够强且其厚度至少在1.5 km左右时,可以检索对流层中下层的水分异常,特别是EMLs。本研究从检索设置和评估的角度出发,为将来在IASI观测中研究真实世界的eml奠定了方法学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are elevated moist layers a blind spot for hyperspectral infrared sounders? – A model study
Abstract. The ability of the hyperspectral satellite based passive infrared instrument IASI to resolve Elevated Moist Layers (EMLs) within the free troposphere is investigated. EMLs are strong moisture anomalies with significant impact on the radiative heating rate profile and are thought to be coupled to freezing level detrainment of convective cells in the tropics. Based on an exemplary EML testcase and forward modelled IASI observations, it is shown that if sufficient independent humidity and temperature information is available, EMLs do not pose a blind spot for passive satellite observations, contrary to what results of Stevens et al. (2017) have indicated. To further quantify the retrieval’s ability to capture moisture anomalies, a statistical evaluation of synthetic retrievals of 1438 clear sky tropical ocean short-range forecast model atmospheres is conducted. For this purpose, a framework for the identification and characterisation of moisture anomalies, a subset of which are EMLs, is introduced. The statistical evaluation shows that retrieved moisture anomalies are on average 37 % weaker and 28 % thicker than their true counterparts, which can be attributed to the retrieval smoothing error and the fact that rather weak and narrow moisture anomalies are most frequently missed by the retrieval. Smoothing is found to also constrain the magnitude of local heating rate extremes associated with moisture anomalies, particularly for the strongest anomalies that are found in the lower to mid troposphere. In total, about 72 % of moisture anomalies in the reference dataset are found by the retrieval. Below 5 km altitude, this fraction is only on the order of 30 %, which can be attributed to the fact that lower tropospheric moisture anomalies are typically more narrow and therefore tougher to retrieve than anomalies aloft. We conclude that the retrieval of lower to mid tropospheric moisture anomalies, in particular of EMLs, is possible when the anomaly is sufficiently strong and its thickness is at least on the order of about 1.5 km. This study sets the methodological basis, from a retrieval setup and evaluation perspective, to investigate real world EMLs in IASI observations in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6×6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Fill dynamics and sample mixing in the AirCore  Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1