使用视觉和惯性传感器融合方法识别人类活动和装配任务的状态

J. Male, Uriel Martinez-Hernandez
{"title":"使用视觉和惯性传感器融合方法识别人类活动和装配任务的状态","authors":"J. Male, Uriel Martinez-Hernandez","doi":"10.1109/ICIT46573.2021.9453672","DOIUrl":null,"url":null,"abstract":"Reliable human machine interfaces is key to accomplishing the goals of Industry 4.0. This work proposes the late fusion of a visual recognition and human action recognition (HAR) classifier. Vision is used to recognise the number of screws assembled into a mock part while HAR from body worn Inertial Measurement Units (IMUs) classifies actions done to assemble the part. Convolutional Neural Network (CNN) methods are used in both modes of classification before various late fusion methods are analysed for prediction of a final state estimate. The fusion methods investigated are mean, weighted average, Support Vector Machine (SVM), Bayesian, Artificial Neural Network (ANN) and Long Short Term Memory (LSTM). The results show the LSTM fusion method to perform best, with accuracy of 93% compared to 81% for IMU and 77% for visual sensing. Development of sensor fusion methods such as these is key to reliable Human Machine Interaction (HMI).","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recognition of human activity and the state of an assembly task using vision and inertial sensor fusion methods\",\"authors\":\"J. Male, Uriel Martinez-Hernandez\",\"doi\":\"10.1109/ICIT46573.2021.9453672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable human machine interfaces is key to accomplishing the goals of Industry 4.0. This work proposes the late fusion of a visual recognition and human action recognition (HAR) classifier. Vision is used to recognise the number of screws assembled into a mock part while HAR from body worn Inertial Measurement Units (IMUs) classifies actions done to assemble the part. Convolutional Neural Network (CNN) methods are used in both modes of classification before various late fusion methods are analysed for prediction of a final state estimate. The fusion methods investigated are mean, weighted average, Support Vector Machine (SVM), Bayesian, Artificial Neural Network (ANN) and Long Short Term Memory (LSTM). The results show the LSTM fusion method to perform best, with accuracy of 93% compared to 81% for IMU and 77% for visual sensing. Development of sensor fusion methods such as these is key to reliable Human Machine Interaction (HMI).\",\"PeriodicalId\":193338,\"journal\":{\"name\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT46573.2021.9453672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

可靠的人机界面是实现工业4.0目标的关键。本文提出了视觉识别和人类动作识别(HAR)分类器的后期融合。视觉用于识别装配到模拟部件中的螺钉数量,而来自身体磨损的惯性测量单元(imu)的HAR对组装部件的动作进行分类。卷积神经网络(CNN)方法用于两种分类模式,然后分析了各种后期融合方法用于最终状态估计的预测。研究的融合方法有均值、加权平均、支持向量机(SVM)、贝叶斯、人工神经网络(ANN)和长短期记忆(LSTM)。结果表明,LSTM融合方法的准确率为93%,而IMU和视觉感知的准确率分别为81%和77%。这些传感器融合方法的发展是实现可靠人机交互的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of human activity and the state of an assembly task using vision and inertial sensor fusion methods
Reliable human machine interfaces is key to accomplishing the goals of Industry 4.0. This work proposes the late fusion of a visual recognition and human action recognition (HAR) classifier. Vision is used to recognise the number of screws assembled into a mock part while HAR from body worn Inertial Measurement Units (IMUs) classifies actions done to assemble the part. Convolutional Neural Network (CNN) methods are used in both modes of classification before various late fusion methods are analysed for prediction of a final state estimate. The fusion methods investigated are mean, weighted average, Support Vector Machine (SVM), Bayesian, Artificial Neural Network (ANN) and Long Short Term Memory (LSTM). The results show the LSTM fusion method to perform best, with accuracy of 93% compared to 81% for IMU and 77% for visual sensing. Development of sensor fusion methods such as these is key to reliable Human Machine Interaction (HMI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Z Packed U-cell (ZPUC) topology, configuration of single DC Source single-phase and three-phase Multilevel Converter Optimal Utilization of the Dual-Active Bridge Converter with Bidirectional Charge Control Long Short-Term Memory based RNN for COVID-19 disease prediction Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors Sequence-Frame Coupling Admittance Analysis and Stability of VSC Connected to Weak Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1