开发新一代FSV工具和标准

A. Drozd, B. Archambeault, A. Duffy, I. Kasperovich
{"title":"开发新一代FSV工具和标准","authors":"A. Drozd, B. Archambeault, A. Duffy, I. Kasperovich","doi":"10.1109/ISEMC.2012.6351653","DOIUrl":null,"url":null,"abstract":"This paper identifies several important aspects of current Feature Selective Validation (FSV) methodologies that are embodied in IEEE Standard 1597.1 for the Validation of CEM Computer Modeling and Simulations. The FSV method facilitates comparisons of sets of electromagnetic (EM) observable data for a given problem to determine “levels of agreement” across amplitude and feature variables. Areas of future revision to this standard are presented that will further enhance the standard's utility for performing Computational Electromagnetic (CEM) technique validation for a wide range of problems. In particular, we consider the utility of the N-dimensional FSV and revisit applications of the Amplitude Difference Measure (ADM), Feature Difference Measure (FDM) and the Global Difference Measure (GDM). This is discussed within the context of large complex system problems that present interesting challenges to the FSV method due to the potentially wide dynamic range of the data. Certain use cases for scattering cross section, system-level coupling, and large system-level EMC problems require a somewhat modified approach in computing the GDM based on how the FDM and ADM are weighted. For the current 1-D FSV, unweighted or incorrectly weighted amplitude and feature measures can potentially lead to inconclusive or even misleading results. These issues are addressed and future revisions to the IEEE Standard 1597.1 are highlighted.","PeriodicalId":197346,"journal":{"name":"2012 IEEE International Symposium on Electromagnetic Compatibility","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of next generation FSV tools and standards\",\"authors\":\"A. Drozd, B. Archambeault, A. Duffy, I. Kasperovich\",\"doi\":\"10.1109/ISEMC.2012.6351653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper identifies several important aspects of current Feature Selective Validation (FSV) methodologies that are embodied in IEEE Standard 1597.1 for the Validation of CEM Computer Modeling and Simulations. The FSV method facilitates comparisons of sets of electromagnetic (EM) observable data for a given problem to determine “levels of agreement” across amplitude and feature variables. Areas of future revision to this standard are presented that will further enhance the standard's utility for performing Computational Electromagnetic (CEM) technique validation for a wide range of problems. In particular, we consider the utility of the N-dimensional FSV and revisit applications of the Amplitude Difference Measure (ADM), Feature Difference Measure (FDM) and the Global Difference Measure (GDM). This is discussed within the context of large complex system problems that present interesting challenges to the FSV method due to the potentially wide dynamic range of the data. Certain use cases for scattering cross section, system-level coupling, and large system-level EMC problems require a somewhat modified approach in computing the GDM based on how the FDM and ADM are weighted. For the current 1-D FSV, unweighted or incorrectly weighted amplitude and feature measures can potentially lead to inconclusive or even misleading results. These issues are addressed and future revisions to the IEEE Standard 1597.1 are highlighted.\",\"PeriodicalId\":197346,\"journal\":{\"name\":\"2012 IEEE International Symposium on Electromagnetic Compatibility\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2012.6351653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2012.6351653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文确定了当前特征选择验证(FSV)方法的几个重要方面,这些方法体现在IEEE标准1597.1中,用于验证CEM计算机建模和仿真。FSV方法有助于对给定问题的电磁(EM)可观测数据集进行比较,以确定振幅和特征变量之间的“一致性水平”。提出了本标准未来修订的领域,这将进一步增强标准在执行计算电磁(CEM)技术验证方面的实用性,以解决广泛的问题。特别地,我们考虑了n维FSV的效用,并重新讨论了振幅差分测量(ADM)、特征差分测量(FDM)和全局差分测量(GDM)的应用。这是在大型复杂系统问题的背景下讨论的,由于数据的潜在宽动态范围,这些问题对FSV方法提出了有趣的挑战。散射截面、系统级耦合和大型系统级EMC问题的某些用例需要基于FDM和ADM的加权方式来计算GDM的一些修改方法。对于当前的一维FSV,未加权或不正确加权的幅度和特征测量可能会导致不确定甚至误导性的结果。这些问题得到了解决,并强调了IEEE标准1597.1的未来修订。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of next generation FSV tools and standards
This paper identifies several important aspects of current Feature Selective Validation (FSV) methodologies that are embodied in IEEE Standard 1597.1 for the Validation of CEM Computer Modeling and Simulations. The FSV method facilitates comparisons of sets of electromagnetic (EM) observable data for a given problem to determine “levels of agreement” across amplitude and feature variables. Areas of future revision to this standard are presented that will further enhance the standard's utility for performing Computational Electromagnetic (CEM) technique validation for a wide range of problems. In particular, we consider the utility of the N-dimensional FSV and revisit applications of the Amplitude Difference Measure (ADM), Feature Difference Measure (FDM) and the Global Difference Measure (GDM). This is discussed within the context of large complex system problems that present interesting challenges to the FSV method due to the potentially wide dynamic range of the data. Certain use cases for scattering cross section, system-level coupling, and large system-level EMC problems require a somewhat modified approach in computing the GDM based on how the FDM and ADM are weighted. For the current 1-D FSV, unweighted or incorrectly weighted amplitude and feature measures can potentially lead to inconclusive or even misleading results. These issues are addressed and future revisions to the IEEE Standard 1597.1 are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal placement for partially populated system EMI testing Overview of the threat of IEMI (intentional electromagnetic interference) Emission source for compatibility testing of wireless networks in the below-deck environment on ships Evaluation of dielectric permittivity for homogeneous materials from transmittance requirements On-chip magnetic resonant coupling with multi-stacked inductive coils for chip-to-chip wireless power transfer (WPT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1