基于支持向量机的视觉语音识别

M. Gordan, Constantine Kotropoulos, I. Pitas
{"title":"基于支持向量机的视觉语音识别","authors":"M. Gordan, Constantine Kotropoulos, I. Pitas","doi":"10.1109/ICDSP.2002.1028281","DOIUrl":null,"url":null,"abstract":"In this paper we propose a visual speech recognition network based on support vector machines. Each word of the dictionary is described as a temporal sequence of visemes. Each viseme is described by a support vector machine, and the temporal character of speech is modeled by integrating the support vector machines as nodes into a Viterbi decoding lattice. Experiments conducted on a small visual speech recognition task show a word recognition rate on the level of the best rates previously reported, even without training the state transition probabilities in the Viterbi lattice and using very simple features. This proves the suitability of support vector machines for visual speech recognition.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Visual speech recognition using support vector machines\",\"authors\":\"M. Gordan, Constantine Kotropoulos, I. Pitas\",\"doi\":\"10.1109/ICDSP.2002.1028281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a visual speech recognition network based on support vector machines. Each word of the dictionary is described as a temporal sequence of visemes. Each viseme is described by a support vector machine, and the temporal character of speech is modeled by integrating the support vector machines as nodes into a Viterbi decoding lattice. Experiments conducted on a small visual speech recognition task show a word recognition rate on the level of the best rates previously reported, even without training the state transition probabilities in the Viterbi lattice and using very simple features. This proves the suitability of support vector machines for visual speech recognition.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于支持向量机的视觉语音识别网络。字典中的每个单词都被描述为一个时间序列的词素。用支持向量机描述每个语义,并将支持向量机作为节点集成到维特比解码格中,对语音的时间特征进行建模。在一个小的视觉语音识别任务上进行的实验表明,即使没有训练Viterbi晶格中的状态转移概率并使用非常简单的特征,单词识别率也达到了先前报道的最佳识别率水平。这证明了支持向量机在视觉语音识别中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual speech recognition using support vector machines
In this paper we propose a visual speech recognition network based on support vector machines. Each word of the dictionary is described as a temporal sequence of visemes. Each viseme is described by a support vector machine, and the temporal character of speech is modeled by integrating the support vector machines as nodes into a Viterbi decoding lattice. Experiments conducted on a small visual speech recognition task show a word recognition rate on the level of the best rates previously reported, even without training the state transition probabilities in the Viterbi lattice and using very simple features. This proves the suitability of support vector machines for visual speech recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1