部分高分辨率指纹匹配的深度密集多层次特征

Fandong Zhang, Shiyuan Xin, Jufu Feng
{"title":"部分高分辨率指纹匹配的深度密集多层次特征","authors":"Fandong Zhang, Shiyuan Xin, Jufu Feng","doi":"10.1109/BTAS.2017.8272723","DOIUrl":null,"url":null,"abstract":"Fingerprint sensors on mobile devices commonly have limited area, which results in partial fingerprints. Optical sensor can capture fingerprints at very high resolution (2000ppi) with abundant details like pores, incipients, etc. It is quite crucial to develop effective partial-to-partial high-resolution fingerprint matching algorithms. Existing fingerprint matching methods are mainly minutiae-based, with fusion of different levels of features. Their accuracy degrades significantly in our application due to minutiae insufficiency and detection error. In this paper, we propose a novel representation for partial high-resolution fingerprint, named Deep Dense Multi-level feature (DDM). We train a deep convolutional neural network that can extract discriminative features inside any local fingerprint block with certain size. We find that not only minutiae but most local blocks contain sufficient features. Moreover, we analyze DDM and find that it contains multi-level information. When utilizing DDM for partial-to-partial matching, we first extract features block by block through a fully convolutional network, next match the two sets of features pairwise exhaustively, and then select the bi-directional best matches to compute matching score. Experiments indicate that our method outperforms several state-of-the-art approaches.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep Dense Multi-level feature for partial high-resolution fingerprint matching\",\"authors\":\"Fandong Zhang, Shiyuan Xin, Jufu Feng\",\"doi\":\"10.1109/BTAS.2017.8272723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fingerprint sensors on mobile devices commonly have limited area, which results in partial fingerprints. Optical sensor can capture fingerprints at very high resolution (2000ppi) with abundant details like pores, incipients, etc. It is quite crucial to develop effective partial-to-partial high-resolution fingerprint matching algorithms. Existing fingerprint matching methods are mainly minutiae-based, with fusion of different levels of features. Their accuracy degrades significantly in our application due to minutiae insufficiency and detection error. In this paper, we propose a novel representation for partial high-resolution fingerprint, named Deep Dense Multi-level feature (DDM). We train a deep convolutional neural network that can extract discriminative features inside any local fingerprint block with certain size. We find that not only minutiae but most local blocks contain sufficient features. Moreover, we analyze DDM and find that it contains multi-level information. When utilizing DDM for partial-to-partial matching, we first extract features block by block through a fully convolutional network, next match the two sets of features pairwise exhaustively, and then select the bi-directional best matches to compute matching score. Experiments indicate that our method outperforms several state-of-the-art approaches.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

移动设备上的指纹传感器通常具有有限的面积,从而导致部分指纹。光学传感器可以以非常高的分辨率(2000ppi)捕获指纹,具有丰富的细节,如孔隙,萌芽等。开发有效的部分到部分高分辨率指纹匹配算法至关重要。现有的指纹匹配方法主要是基于微小特征,融合不同层次的特征。在我们的应用中,由于细微的不足和检测误差,它们的准确性大大降低。在本文中,我们提出了一种新的部分高分辨率指纹的表示方法,称为Deep Dense Multi-level feature (DDM)。我们训练了一个深度卷积神经网络,该网络可以在任意大小的局部指纹块中提取判别特征。我们发现,不仅是细枝末节,而且大多数局部块都包含足够的特征。此外,我们对DDM进行了分析,发现它包含了多层次的信息。在利用DDM进行部分到部分匹配时,我们首先通过全卷积网络逐块提取特征,然后对两组特征进行穷尽匹配,然后选择双向最佳匹配来计算匹配分数。实验表明,我们的方法优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Dense Multi-level feature for partial high-resolution fingerprint matching
Fingerprint sensors on mobile devices commonly have limited area, which results in partial fingerprints. Optical sensor can capture fingerprints at very high resolution (2000ppi) with abundant details like pores, incipients, etc. It is quite crucial to develop effective partial-to-partial high-resolution fingerprint matching algorithms. Existing fingerprint matching methods are mainly minutiae-based, with fusion of different levels of features. Their accuracy degrades significantly in our application due to minutiae insufficiency and detection error. In this paper, we propose a novel representation for partial high-resolution fingerprint, named Deep Dense Multi-level feature (DDM). We train a deep convolutional neural network that can extract discriminative features inside any local fingerprint block with certain size. We find that not only minutiae but most local blocks contain sufficient features. Moreover, we analyze DDM and find that it contains multi-level information. When utilizing DDM for partial-to-partial matching, we first extract features block by block through a fully convolutional network, next match the two sets of features pairwise exhaustively, and then select the bi-directional best matches to compute matching score. Experiments indicate that our method outperforms several state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1