带时间窗旅行商问题的遗传算法优化

Juwairiah Juwairiah, Dicky Pratama, H. Rustamaji, Herry Sofyan, Dessyanto Boedi Prasetyo
{"title":"带时间窗旅行商问题的遗传算法优化","authors":"Juwairiah Juwairiah, Dicky Pratama, H. Rustamaji, Herry Sofyan, Dessyanto Boedi Prasetyo","doi":"10.25139/ijair.v1i1.2024","DOIUrl":null,"url":null,"abstract":"The concept of Traveling Salesman Problem (TSP) used in the discussion of this paper is the Traveling Salesman Problem with Time Windows (TSP-TW), where the time variable considered is the time of availability of attractions for tourists to visit. The algorithm used for optimizing the solution of Traveling Salesman Problem with Time Windows (TSP-TW) is a genetic algorithm. The search for a solution for determining the best route begins with the formation of an initial population that contains a collection of individuals. Each individual has a combination of different tourist sequence. Then it is processed by genetic operators, namely crossover with Partially Mapped Crossover (PMX) method, mutation using reciprocal exchange method, and selection using ranked-based fitness method. The research method used is GRAPPLE. Based on tests conducted, the optimal generation size results obtained in solving the TSP-TW problem on the tourist route in the Province of DIY using genetic algorithms is 700, population size is 40, and the combination of crossover rate and mutation rate is 0.70 and 0.30 There is a tolerance time of 5 seconds between the process of requesting distance and travel time and the process of forming a tourist route for the genetic algorithm process.","PeriodicalId":365842,"journal":{"name":"International Journal of Artificial Intelligence & Robotics (IJAIR)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genetic Algorithm for Optimizing Traveling Salesman Problems with Time Windows (TSP-TW)\",\"authors\":\"Juwairiah Juwairiah, Dicky Pratama, H. Rustamaji, Herry Sofyan, Dessyanto Boedi Prasetyo\",\"doi\":\"10.25139/ijair.v1i1.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of Traveling Salesman Problem (TSP) used in the discussion of this paper is the Traveling Salesman Problem with Time Windows (TSP-TW), where the time variable considered is the time of availability of attractions for tourists to visit. The algorithm used for optimizing the solution of Traveling Salesman Problem with Time Windows (TSP-TW) is a genetic algorithm. The search for a solution for determining the best route begins with the formation of an initial population that contains a collection of individuals. Each individual has a combination of different tourist sequence. Then it is processed by genetic operators, namely crossover with Partially Mapped Crossover (PMX) method, mutation using reciprocal exchange method, and selection using ranked-based fitness method. The research method used is GRAPPLE. Based on tests conducted, the optimal generation size results obtained in solving the TSP-TW problem on the tourist route in the Province of DIY using genetic algorithms is 700, population size is 40, and the combination of crossover rate and mutation rate is 0.70 and 0.30 There is a tolerance time of 5 seconds between the process of requesting distance and travel time and the process of forming a tourist route for the genetic algorithm process.\",\"PeriodicalId\":365842,\"journal\":{\"name\":\"International Journal of Artificial Intelligence & Robotics (IJAIR)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Intelligence & Robotics (IJAIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25139/ijair.v1i1.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence & Robotics (IJAIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/ijair.v1i1.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论中使用的旅行推销员问题(TSP)的概念是带时间窗口的旅行推销员问题(TSP- tw),其中考虑的时间变量是游客参观景点的可用时间。求解带时间窗的旅行商问题(TSP-TW)的优化算法是一种遗传算法。寻找确定最佳路线的解决方案始于形成包含个体集合的初始种群。每个个体都有不同的旅游序列组合。然后对遗传算子进行处理,即利用部分映射交叉(PMX)方法进行交叉,利用互反交换方法进行突变,利用基于秩的适应度方法进行选择。使用的研究方法是GRAPPLE。经过测试,利用遗传算法求解DIY省旅游路线TSP-TW问题得到的最优代数结果为700,种群规模为40,交叉率和突变率组合为0.70和0.30,遗传算法过程中请求距离和行程时间的过程与形成旅游路线的过程之间有5秒的容差时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Algorithm for Optimizing Traveling Salesman Problems with Time Windows (TSP-TW)
The concept of Traveling Salesman Problem (TSP) used in the discussion of this paper is the Traveling Salesman Problem with Time Windows (TSP-TW), where the time variable considered is the time of availability of attractions for tourists to visit. The algorithm used for optimizing the solution of Traveling Salesman Problem with Time Windows (TSP-TW) is a genetic algorithm. The search for a solution for determining the best route begins with the formation of an initial population that contains a collection of individuals. Each individual has a combination of different tourist sequence. Then it is processed by genetic operators, namely crossover with Partially Mapped Crossover (PMX) method, mutation using reciprocal exchange method, and selection using ranked-based fitness method. The research method used is GRAPPLE. Based on tests conducted, the optimal generation size results obtained in solving the TSP-TW problem on the tourist route in the Province of DIY using genetic algorithms is 700, population size is 40, and the combination of crossover rate and mutation rate is 0.70 and 0.30 There is a tolerance time of 5 seconds between the process of requesting distance and travel time and the process of forming a tourist route for the genetic algorithm process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotion Detection in Twitter Social Media Using Long Short-Term Memory (LSTM) and Fast Text Traffic Light Automation with Camera Tracker and Microphone to Recognize Ambulance Using the HAAR Cascade Classifier Method Message Security Using Rivest-Shamir-Adleman Cryptography and Least Significant Bit Steganography with Video Platform An Automatic Sliding Doors Using RFID and Arduino An Implementation of MMS Steganography With The LSB Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1