基于模态内融合的视听识别系统

Yee Wan Wong, K. Seng, L. Ang, Wan Yong Khor, Fui Liau
{"title":"基于模态内融合的视听识别系统","authors":"Yee Wan Wong, K. Seng, L. Ang, Wan Yong Khor, Fui Liau","doi":"10.1109/CIS.2007.196","DOIUrl":null,"url":null,"abstract":"In this paper, a new multimodal biometric recognition system based on feature fusion is proposed to increase the robustness and circumvention of conventional multimodal recognition system. The feature sets originating from the output of the visual and audio feature extraction systems are fused and being classified by RBF neural network. Other than that, 2DPCA is proposed to work in conjunction with LDA to further increase the recognition performance of the visual recognition system. The experimental result shows that the proposed system achieves a higher recognition rate as compared to the conventional multimodal recognition system. Besides, we also show that the 2DPCA+LDA achieves a higher recognition rate as compared with PCA, PCA+LDA and 2DPCA.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Audio-Visual Recognition System with Intra-Modal Fusion\",\"authors\":\"Yee Wan Wong, K. Seng, L. Ang, Wan Yong Khor, Fui Liau\",\"doi\":\"10.1109/CIS.2007.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new multimodal biometric recognition system based on feature fusion is proposed to increase the robustness and circumvention of conventional multimodal recognition system. The feature sets originating from the output of the visual and audio feature extraction systems are fused and being classified by RBF neural network. Other than that, 2DPCA is proposed to work in conjunction with LDA to further increase the recognition performance of the visual recognition system. The experimental result shows that the proposed system achieves a higher recognition rate as compared to the conventional multimodal recognition system. Besides, we also show that the 2DPCA+LDA achieves a higher recognition rate as compared with PCA, PCA+LDA and 2DPCA.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

为了提高传统多模态识别系统的鲁棒性和规避性,提出了一种新的基于特征融合的多模态生物特征识别系统。利用RBF神经网络对视觉和音频特征提取系统输出的特征集进行融合和分类。除此之外,还提出了2DPCA与LDA的协同工作,以进一步提高视觉识别系统的识别性能。实验结果表明,与传统的多模态识别系统相比,该系统具有更高的识别率。此外,与PCA、PCA+LDA和2DPCA相比,2DPCA+LDA的识别率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-Visual Recognition System with Intra-Modal Fusion
In this paper, a new multimodal biometric recognition system based on feature fusion is proposed to increase the robustness and circumvention of conventional multimodal recognition system. The feature sets originating from the output of the visual and audio feature extraction systems are fused and being classified by RBF neural network. Other than that, 2DPCA is proposed to work in conjunction with LDA to further increase the recognition performance of the visual recognition system. The experimental result shows that the proposed system achieves a higher recognition rate as compared to the conventional multimodal recognition system. Besides, we also show that the 2DPCA+LDA achieves a higher recognition rate as compared with PCA, PCA+LDA and 2DPCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1