合金的自动测试生成和突变测试

Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, S. Khurshid
{"title":"合金的自动测试生成和突变测试","authors":"Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, S. Khurshid","doi":"10.1109/ICST.2017.31","DOIUrl":null,"url":null,"abstract":"We present two novel approaches for automated testing of models written in Alloy – a well-known declarative, first-order language that is supported by a fully automatic SAT-based analysis engine. The first approach introduces automated test generation for Alloy and is embodied by three techniques that create test suites in the traditional spirit of black-box, white-box, and mutation-based testing. The second approach introduces mutation testing for Alloy and defines how to create mutants of Alloy models, compute mutation testing results, and check for equivalent mutants using SAT. The two approaches build on the theoretical foundation defined previously by our AUnit framework, which introduced the idea of unit testing for Alloy in the spirit of unit testing for imperative languages. While test generation and mutation testing are heavily studied problems with many solutions in the context of imperative languages, the key novelty of our work is to introduce and address these problems for the declarative programming paradigm, specifically for the Alloy language. Experimental results using several Alloy subjects, including those with real faults, demonstrate the efficacy of our framework.","PeriodicalId":112258,"journal":{"name":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Automated Test Generation and Mutation Testing for Alloy\",\"authors\":\"Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, S. Khurshid\",\"doi\":\"10.1109/ICST.2017.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two novel approaches for automated testing of models written in Alloy – a well-known declarative, first-order language that is supported by a fully automatic SAT-based analysis engine. The first approach introduces automated test generation for Alloy and is embodied by three techniques that create test suites in the traditional spirit of black-box, white-box, and mutation-based testing. The second approach introduces mutation testing for Alloy and defines how to create mutants of Alloy models, compute mutation testing results, and check for equivalent mutants using SAT. The two approaches build on the theoretical foundation defined previously by our AUnit framework, which introduced the idea of unit testing for Alloy in the spirit of unit testing for imperative languages. While test generation and mutation testing are heavily studied problems with many solutions in the context of imperative languages, the key novelty of our work is to introduce and address these problems for the declarative programming paradigm, specifically for the Alloy language. Experimental results using several Alloy subjects, including those with real faults, demonstrate the efficacy of our framework.\",\"PeriodicalId\":112258,\"journal\":{\"name\":\"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST.2017.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2017.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们提出了两种新的方法来自动测试用Alloy编写的模型,Alloy是一种著名的声明性一阶语言,由一个全自动的基于sat的分析引擎支持。第一种方法为Alloy引入了自动化的测试生成,并体现在三种技术中,这些技术以黑盒、白盒和基于突变的测试的传统精神创建测试套件。第二种方法引入了Alloy的突变测试,并定义了如何创建Alloy模型的突变,计算突变测试结果,并使用SAT检查等效突变。这两种方法建立在前面我们的AUnit框架定义的理论基础上,该框架以命令式语言的单元测试精神引入了Alloy的单元测试思想。虽然在命令式语言的环境中,测试生成和突变测试是通过许多解决方案被大量研究的问题,但我们工作的关键新颖之处在于为声明性编程范式(特别是Alloy语言)引入并解决了这些问题。实验结果表明,该框架是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Test Generation and Mutation Testing for Alloy
We present two novel approaches for automated testing of models written in Alloy – a well-known declarative, first-order language that is supported by a fully automatic SAT-based analysis engine. The first approach introduces automated test generation for Alloy and is embodied by three techniques that create test suites in the traditional spirit of black-box, white-box, and mutation-based testing. The second approach introduces mutation testing for Alloy and defines how to create mutants of Alloy models, compute mutation testing results, and check for equivalent mutants using SAT. The two approaches build on the theoretical foundation defined previously by our AUnit framework, which introduced the idea of unit testing for Alloy in the spirit of unit testing for imperative languages. While test generation and mutation testing are heavily studied problems with many solutions in the context of imperative languages, the key novelty of our work is to introduce and address these problems for the declarative programming paradigm, specifically for the Alloy language. Experimental results using several Alloy subjects, including those with real faults, demonstrate the efficacy of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Theory of Composite Faults Symbolic Complexity Analysis Using Context-Preserving Histories Using Delta Debugging to Minimize Stress Tests for Concurrent Data Structures Private API Access and Functional Mocking in Automated Unit Test Generation Automata Language Equivalence vs. Simulations for Model-Based Mutant Equivalence: An Empirical Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1