{"title":"选定练习的解决方案","authors":"J. Stillwell","doi":"10.23943/princeton/9780691197296.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.","PeriodicalId":119327,"journal":{"name":"Statistical Inference via Convex Optimization","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to Selected Exercises\",\"authors\":\"J. Stillwell\",\"doi\":\"10.23943/princeton/9780691197296.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.\",\"PeriodicalId\":119327,\"journal\":{\"name\":\"Statistical Inference via Convex Optimization\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Inference via Convex Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23943/princeton/9780691197296.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Inference via Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691197296.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.