{"title":"改进的分布式delta着色","authors":"M. Ghaffari, J. Hirvonen, F. Kuhn, Yannic Maus","doi":"10.1145/3212734.3212764","DOIUrl":null,"url":null,"abstract":"We present a randomized distributed algorithm that computes a Δ- coloring in any non-complete graph with maximum degree Δ ≥ 4 in O(log Δ) +2O( √ log log n) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((log logn)2) rounds when Δ ε [3,O(1)]. Both these algorithms improve on an O(log3 n/ log Δ)- round algorithm of Panconesi and Srinivasan [STOC'1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(log logn) round lower bound of Brandt et al. [STOC'16].","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Improved Distributed Delta-Coloring\",\"authors\":\"M. Ghaffari, J. Hirvonen, F. Kuhn, Yannic Maus\",\"doi\":\"10.1145/3212734.3212764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a randomized distributed algorithm that computes a Δ- coloring in any non-complete graph with maximum degree Δ ≥ 4 in O(log Δ) +2O( √ log log n) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((log logn)2) rounds when Δ ε [3,O(1)]. Both these algorithms improve on an O(log3 n/ log Δ)- round algorithm of Panconesi and Srinivasan [STOC'1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(log logn) round lower bound of Brandt et al. [STOC'16].\",\"PeriodicalId\":198284,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212734.3212764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a randomized distributed algorithm that computes a Δ- coloring in any non-complete graph with maximum degree Δ ≥ 4 in O(log Δ) +2O( √ log log n) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((log logn)2) rounds when Δ ε [3,O(1)]. Both these algorithms improve on an O(log3 n/ log Δ)- round algorithm of Panconesi and Srinivasan [STOC'1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(log logn) round lower bound of Brandt et al. [STOC'16].