多传感器交通映射过滤器

R. Streit
{"title":"多传感器交通映射过滤器","authors":"R. Streit","doi":"10.1109/SDF.2012.6327906","DOIUrl":null,"url":null,"abstract":"A traffic intensity filter is derived using a probability generating functional approach. Traffic filters estimate, or map, the mean rate at which different regions of state space generate target detection opportunities in a field of distributed sensors. They are Bayesian filters that incorporate sensor measurement likelihood functions and target detection capabilities. Traffic maps contribute to situational awareness for heterogeneous sensor fields. They are practical for applications with large numbers of sensors because their computational complexity is linear in the numbers of sensors and measurements.","PeriodicalId":212723,"journal":{"name":"2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multisensor traffic mapping filters\",\"authors\":\"R. Streit\",\"doi\":\"10.1109/SDF.2012.6327906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A traffic intensity filter is derived using a probability generating functional approach. Traffic filters estimate, or map, the mean rate at which different regions of state space generate target detection opportunities in a field of distributed sensors. They are Bayesian filters that incorporate sensor measurement likelihood functions and target detection capabilities. Traffic maps contribute to situational awareness for heterogeneous sensor fields. They are practical for applications with large numbers of sensors because their computational complexity is linear in the numbers of sensors and measurements.\",\"PeriodicalId\":212723,\"journal\":{\"name\":\"2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2012.6327906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2012.6327906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用概率生成函数的方法推导了交通强度滤波器。交通过滤器估计或映射分布传感器领域中状态空间不同区域产生目标检测机会的平均速率。它们是包含传感器测量似然函数和目标检测功能的贝叶斯滤波器。交通地图有助于异构传感器领域的态势感知。它们对于具有大量传感器的应用是实用的,因为它们的计算复杂度与传感器和测量的数量呈线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multisensor traffic mapping filters
A traffic intensity filter is derived using a probability generating functional approach. Traffic filters estimate, or map, the mean rate at which different regions of state space generate target detection opportunities in a field of distributed sensors. They are Bayesian filters that incorporate sensor measurement likelihood functions and target detection capabilities. Traffic maps contribute to situational awareness for heterogeneous sensor fields. They are practical for applications with large numbers of sensors because their computational complexity is linear in the numbers of sensors and measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous localization and mapping for non-parametric potential field environments Multisensor traffic mapping filters Track maintenance using the SMC-intensity filter Creating a likelihood vector for ground moving targets in the exo-clutter region of airborne radar signals A particle filter for target arrival detection and tracking in Track-Before-Detect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1