准确性问题:选择基于批量的成本改进曲线

Shu-Ping Hu, Alfred Smith
{"title":"准确性问题:选择基于批量的成本改进曲线","authors":"Shu-Ping Hu, Alfred Smith","doi":"10.1080/1941658X.2013.766550","DOIUrl":null,"url":null,"abstract":"There are two commonly used cost improvement curve theories: unit cost theory and cumulative average cost theory. Ideally, analysts develop the cost improvement curve by analyzing unit cost data. However, it is common that instead of unit costs, analysts must develop the cost improvement curve from lot cost data. An essential step in this process is to estimate the theoretical lot midpoints for each lot, to proceed with the curve-fitting process. Lot midpoints are generally associated with unit cost theory, where the midpoint is always within the lot. The more general lot plot point term is used in the context of both the unit cost and cumulative average cost theories. Many research papers have been published on cost improvement curves, including several that discuss estimating the lot midpoint. A two-term formula has traditionally been used as a useful approximation to derive the lot total cost, as well as the lot midpoint under unit cost theory (see SCEA, 2002–2011; CEBoK, Module 7). There is, however, a more accurate six-term formula to better approximate the lot total cost and lot midpoint. This increase in accuracy may be substantial for high-cost items or an aggregated estimate, consisting of many cost improvement curve-related items. The more accurate formula can also impact cost uncertainty analysis results, especially when thousands of iterations are performed. This article describes how to derive and use lot plot points for both the unit cost and cumulative average cost theories. We describe how the analyst can use lot plot points to construct prediction intervals for cost uncertainty analysis. This approach is more efficient and appropriate than using the unit cost curve directly. In addition, this article will (1) detail an iterative, two-step regression method to implement the six-term formula, (2) describe the advantages of generating the lot plot points for cost improvement curves, (3) recommend an iterative (not direct) approach to fit a cost improvement curve under cumulative average theory, and (4) compare cost improvement curves derived using the two-step regression method with cost improvement curves generated by the simultaneous minimization process. Different error term assumptions and realistic examples are also discussed. In the example section, we show why the goodness-of-fit measures alone should not be used for selecting a best model, especially when either the fit spaces or the dependent variables are different.","PeriodicalId":390877,"journal":{"name":"Journal of Cost Analysis and Parametrics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accuracy Matters: Selecting a Lot-Based Cost Improvement Curve\",\"authors\":\"Shu-Ping Hu, Alfred Smith\",\"doi\":\"10.1080/1941658X.2013.766550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two commonly used cost improvement curve theories: unit cost theory and cumulative average cost theory. Ideally, analysts develop the cost improvement curve by analyzing unit cost data. However, it is common that instead of unit costs, analysts must develop the cost improvement curve from lot cost data. An essential step in this process is to estimate the theoretical lot midpoints for each lot, to proceed with the curve-fitting process. Lot midpoints are generally associated with unit cost theory, where the midpoint is always within the lot. The more general lot plot point term is used in the context of both the unit cost and cumulative average cost theories. Many research papers have been published on cost improvement curves, including several that discuss estimating the lot midpoint. A two-term formula has traditionally been used as a useful approximation to derive the lot total cost, as well as the lot midpoint under unit cost theory (see SCEA, 2002–2011; CEBoK, Module 7). There is, however, a more accurate six-term formula to better approximate the lot total cost and lot midpoint. This increase in accuracy may be substantial for high-cost items or an aggregated estimate, consisting of many cost improvement curve-related items. The more accurate formula can also impact cost uncertainty analysis results, especially when thousands of iterations are performed. This article describes how to derive and use lot plot points for both the unit cost and cumulative average cost theories. We describe how the analyst can use lot plot points to construct prediction intervals for cost uncertainty analysis. This approach is more efficient and appropriate than using the unit cost curve directly. In addition, this article will (1) detail an iterative, two-step regression method to implement the six-term formula, (2) describe the advantages of generating the lot plot points for cost improvement curves, (3) recommend an iterative (not direct) approach to fit a cost improvement curve under cumulative average theory, and (4) compare cost improvement curves derived using the two-step regression method with cost improvement curves generated by the simultaneous minimization process. Different error term assumptions and realistic examples are also discussed. In the example section, we show why the goodness-of-fit measures alone should not be used for selecting a best model, especially when either the fit spaces or the dependent variables are different.\",\"PeriodicalId\":390877,\"journal\":{\"name\":\"Journal of Cost Analysis and Parametrics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cost Analysis and Parametrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1941658X.2013.766550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cost Analysis and Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1941658X.2013.766550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

常用的成本改善曲线理论有两种:单位成本理论和累积平均成本理论。理想情况下,分析师通过分析单位成本数据来开发成本改进曲线。然而,通常情况下,分析师必须从批量成本数据中开发成本改善曲线,而不是单位成本。该过程的一个重要步骤是估计每个批次的理论批次中点,以进行曲线拟合过程。批次中点通常与单位成本理论有关,其中中点总是在批次内。更一般的地块点术语在单位成本和累积平均成本理论的背景下使用。许多关于成本改善曲线的研究论文已经发表,其中包括一些讨论估计批量中点的论文。一个两项公式传统上被用来作为一个有用的近似值来推导批次总成本,以及单位成本理论下的批次中点(见SCEA, 2002-2011;然而,有一个更准确的六项公式可以更好地近似批次总成本和批次中点。这种准确性的提高对于高成本项目或由许多成本改进曲线相关项目组成的汇总估计可能是实质性的。更精确的公式也会影响成本不确定性分析结果,特别是在执行数千次迭代时。本文描述了单位成本理论和累积平均成本理论如何推导和使用地块点。我们描述了分析师如何使用地块点来构建成本不确定性分析的预测区间。这种方法比直接使用单位成本曲线更有效和合适。此外,本文将(1)详细介绍实现六项公式的迭代两步回归方法,(2)描述生成成本改善曲线的地块点的优点,(3)推荐在累积平均理论下拟合成本改善曲线的迭代(非直接)方法,以及(4)比较使用两步回归方法导出的成本改善曲线与同时最小化过程生成的成本改善曲线。还讨论了不同误差项的假设和实际例子。在示例部分中,我们说明了为什么不应该单独使用拟合优度度量来选择最佳模型,特别是当拟合空间或因变量不同时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy Matters: Selecting a Lot-Based Cost Improvement Curve
There are two commonly used cost improvement curve theories: unit cost theory and cumulative average cost theory. Ideally, analysts develop the cost improvement curve by analyzing unit cost data. However, it is common that instead of unit costs, analysts must develop the cost improvement curve from lot cost data. An essential step in this process is to estimate the theoretical lot midpoints for each lot, to proceed with the curve-fitting process. Lot midpoints are generally associated with unit cost theory, where the midpoint is always within the lot. The more general lot plot point term is used in the context of both the unit cost and cumulative average cost theories. Many research papers have been published on cost improvement curves, including several that discuss estimating the lot midpoint. A two-term formula has traditionally been used as a useful approximation to derive the lot total cost, as well as the lot midpoint under unit cost theory (see SCEA, 2002–2011; CEBoK, Module 7). There is, however, a more accurate six-term formula to better approximate the lot total cost and lot midpoint. This increase in accuracy may be substantial for high-cost items or an aggregated estimate, consisting of many cost improvement curve-related items. The more accurate formula can also impact cost uncertainty analysis results, especially when thousands of iterations are performed. This article describes how to derive and use lot plot points for both the unit cost and cumulative average cost theories. We describe how the analyst can use lot plot points to construct prediction intervals for cost uncertainty analysis. This approach is more efficient and appropriate than using the unit cost curve directly. In addition, this article will (1) detail an iterative, two-step regression method to implement the six-term formula, (2) describe the advantages of generating the lot plot points for cost improvement curves, (3) recommend an iterative (not direct) approach to fit a cost improvement curve under cumulative average theory, and (4) compare cost improvement curves derived using the two-step regression method with cost improvement curves generated by the simultaneous minimization process. Different error term assumptions and realistic examples are also discussed. In the example section, we show why the goodness-of-fit measures alone should not be used for selecting a best model, especially when either the fit spaces or the dependent variables are different.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board EOV Multiproduct Cost-Volume-Profit Model: A Resource Reallocation Approach for Decision Making Dynamics of New Building Construction Costs: Implications for Forecasting Escalation Allowances Balancing Expert Opinion and Historical Data: The Case of Baseball Umpires Using Robust Statistical Methodology to Evaluate the Cost Performance of Project Delivery Systems: A Case Study of Horizontal Construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1