无数据丢失的混合方法压缩英语语音数据

Çigdem Bakir
{"title":"无数据丢失的混合方法压缩英语语音数据","authors":"Çigdem Bakir","doi":"10.18100/ijamec.1166951","DOIUrl":null,"url":null,"abstract":"Understanding the mechanism of speech formation is of great importance in the successful coding of the speech signal. It is also used for various applications, from authenticating audio files to connecting speech recording to data acquisition device (e.g. microphone). Speech coding is of vital importance in the acquisition, analysis and evaluation of sound, and in the investigation of criminal events in forensics. For the collection, processing, analysis, extraction and evaluation of speech or sounds recorded as audio files, which play an important role in crime detection, it is necessary to compress the audio without data loss. Since there are many voice changing software available today, the number of recorded speech files and their correct interpretation play an important role in detecting originality. Using various techniques such as signal processing, noise extraction, filtering on an incomprehensible speech recording, improving the speech, making them comprehensible, determining whether there is any manipulation on the speech recording, understanding whether it is original, whether various methods of addition and subtraction are used, coding of sounds, the code must be decoded and the decoded sounds must be transcribed. In this study, first of all, what sound coding is, its purposes, areas of use, classification of sound coding according to some features and techniques are given. Moreover, in our study speech coding was done on the English audio data. This dataset is the real dataset and consists of approximately 100000 voice recordings. Speech coding was done using waveform, vocoders and hybrid methods and the success of all the methods used on the system we created was measured. Hybrid models gave more successful results than others. The results obtained will set an example for our future work.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressing English Speech Data with Hybrid Methods without Data Loss\",\"authors\":\"Çigdem Bakir\",\"doi\":\"10.18100/ijamec.1166951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the mechanism of speech formation is of great importance in the successful coding of the speech signal. It is also used for various applications, from authenticating audio files to connecting speech recording to data acquisition device (e.g. microphone). Speech coding is of vital importance in the acquisition, analysis and evaluation of sound, and in the investigation of criminal events in forensics. For the collection, processing, analysis, extraction and evaluation of speech or sounds recorded as audio files, which play an important role in crime detection, it is necessary to compress the audio without data loss. Since there are many voice changing software available today, the number of recorded speech files and their correct interpretation play an important role in detecting originality. Using various techniques such as signal processing, noise extraction, filtering on an incomprehensible speech recording, improving the speech, making them comprehensible, determining whether there is any manipulation on the speech recording, understanding whether it is original, whether various methods of addition and subtraction are used, coding of sounds, the code must be decoded and the decoded sounds must be transcribed. In this study, first of all, what sound coding is, its purposes, areas of use, classification of sound coding according to some features and techniques are given. Moreover, in our study speech coding was done on the English audio data. This dataset is the real dataset and consists of approximately 100000 voice recordings. Speech coding was done using waveform, vocoders and hybrid methods and the success of all the methods used on the system we created was measured. Hybrid models gave more successful results than others. The results obtained will set an example for our future work.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/ijamec.1166951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.1166951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解语音形成的机制对语音信号的成功编码具有重要意义。它也用于各种应用,从验证音频文件到连接语音记录到数据采集设备(例如麦克风)。语音编码在声音的采集、分析和评价以及刑事案件的法医学调查中具有重要的意义。对录音文件中的语音或声音进行采集、处理、分析、提取和评价,在犯罪侦查中起着重要的作用,因此需要对音频进行压缩,使其不丢失数据。由于现在有许多语音转换软件,因此录制语音文件的数量及其正确的解释在检测原创性方面起着重要作用。对听不懂的语音录音采用信号处理、噪声提取、滤波等各种技术,对语音录音进行改进,使其变得可以理解,判断语音录音是否有任何操纵,了解其是否原创,是否使用了各种加减法,对声音进行编码,编码必须解码,解码后的声音必须转录。本文首先介绍了什么是声音编码、声音编码的目的、声音编码的使用领域、声音编码的一些特点和技术分类。此外,在我们的研究中,对英语音频数据进行语音编码。这个数据集是真实的数据集,由大约100000个语音记录组成。语音编码是使用波形、声码器和混合方法完成的,并且测量了我们创建的系统上使用的所有方法的成功。混合模型给出了比其他模型更成功的结果。所得结果将为我们今后的工作树立榜样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressing English Speech Data with Hybrid Methods without Data Loss
Understanding the mechanism of speech formation is of great importance in the successful coding of the speech signal. It is also used for various applications, from authenticating audio files to connecting speech recording to data acquisition device (e.g. microphone). Speech coding is of vital importance in the acquisition, analysis and evaluation of sound, and in the investigation of criminal events in forensics. For the collection, processing, analysis, extraction and evaluation of speech or sounds recorded as audio files, which play an important role in crime detection, it is necessary to compress the audio without data loss. Since there are many voice changing software available today, the number of recorded speech files and their correct interpretation play an important role in detecting originality. Using various techniques such as signal processing, noise extraction, filtering on an incomprehensible speech recording, improving the speech, making them comprehensible, determining whether there is any manipulation on the speech recording, understanding whether it is original, whether various methods of addition and subtraction are used, coding of sounds, the code must be decoded and the decoded sounds must be transcribed. In this study, first of all, what sound coding is, its purposes, areas of use, classification of sound coding according to some features and techniques are given. Moreover, in our study speech coding was done on the English audio data. This dataset is the real dataset and consists of approximately 100000 voice recordings. Speech coding was done using waveform, vocoders and hybrid methods and the success of all the methods used on the system we created was measured. Hybrid models gave more successful results than others. The results obtained will set an example for our future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of ANFIS models in Prediction of Streamflow: the case of Seyhan Basin Prediction of electromagnetic power density emitted from GSM base stations by using multiple linear regression Epileptic seizure detection combining power spectral density and high-frequency oscillations Adaptive Neural-Fuzzy controller design combined with LQR to control the position of gantry crane Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1