一种改进的P-SVM方法用于处理不平衡数据集

Li Chen, J. Chen, Xintao Gao
{"title":"一种改进的P-SVM方法用于处理不平衡数据集","authors":"Li Chen, J. Chen, Xintao Gao","doi":"10.1109/ICICISYS.2009.5357925","DOIUrl":null,"url":null,"abstract":"Potential Support Vector Machine (P-SVM) is a novel Support Vector Machine (SVM) method. It defines a new optimization model which is different from standard SVM. However, P-SVM method has restrictions in dealing with unbalanced data sets. To solve this problem, an improved P-SVM method used to deal with imbalanced data sets is proposed in this paper. By using different penalty parameters to different slack variables in P-SVM, the new algorithm adjusts penalty parameters more flexible, and effectively improves the low classification accuracy caused by imbalanced samples. From theoretical analyses and experimental results, they have shown that this new method can obtain better classification accuracy than standard SVM and P-SVM in dealing with imbalanced data sets.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An improved P-SVM method used to deal with imbalanced data sets\",\"authors\":\"Li Chen, J. Chen, Xintao Gao\",\"doi\":\"10.1109/ICICISYS.2009.5357925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential Support Vector Machine (P-SVM) is a novel Support Vector Machine (SVM) method. It defines a new optimization model which is different from standard SVM. However, P-SVM method has restrictions in dealing with unbalanced data sets. To solve this problem, an improved P-SVM method used to deal with imbalanced data sets is proposed in this paper. By using different penalty parameters to different slack variables in P-SVM, the new algorithm adjusts penalty parameters more flexible, and effectively improves the low classification accuracy caused by imbalanced samples. From theoretical analyses and experimental results, they have shown that this new method can obtain better classification accuracy than standard SVM and P-SVM in dealing with imbalanced data sets.\",\"PeriodicalId\":206575,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2009.5357925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

潜在支持向量机(P-SVM)是一种新的支持向量机方法。它定义了一种不同于标准支持向量机的优化模型。然而,P-SVM方法在处理非平衡数据集时存在一定的局限性。为了解决这一问题,本文提出了一种改进的P-SVM方法来处理不平衡数据集。该算法通过对P-SVM中的不同松弛变量使用不同的惩罚参数,使惩罚参数的调整更加灵活,有效地改善了样本不平衡导致的分类精度低的问题。理论分析和实验结果表明,该方法在处理不平衡数据集时比标准支持向量机和p -支持向量机具有更好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved P-SVM method used to deal with imbalanced data sets
Potential Support Vector Machine (P-SVM) is a novel Support Vector Machine (SVM) method. It defines a new optimization model which is different from standard SVM. However, P-SVM method has restrictions in dealing with unbalanced data sets. To solve this problem, an improved P-SVM method used to deal with imbalanced data sets is proposed in this paper. By using different penalty parameters to different slack variables in P-SVM, the new algorithm adjusts penalty parameters more flexible, and effectively improves the low classification accuracy caused by imbalanced samples. From theoretical analyses and experimental results, they have shown that this new method can obtain better classification accuracy than standard SVM and P-SVM in dealing with imbalanced data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1