采用单独螺距控制减轻疲劳载荷的风力机LQG控制器的比较

S. Nourdine, H. Camblong, I. Vechiu, G. Tapia
{"title":"采用单独螺距控制减轻疲劳载荷的风力机LQG控制器的比较","authors":"S. Nourdine, H. Camblong, I. Vechiu, G. Tapia","doi":"10.1109/MED.2010.5547822","DOIUrl":null,"url":null,"abstract":"This paper focuses on the design of Linear Quadratic Gaussian (LQG) controllers for variable-speed horizontal axis Wind Turbines (WT). These turbines use blade pitch angle and electromagnetic torque control variables to meet specified objectives for Full Load (FL) zone. The main control objectives are to reduce structural dynamic loads and to regulate the power of the WT. The controllers are designed in order to optimize a trade-off between several control objectives. Four different LQG using Individual Pitch Control (IPC) are designed, with Wireless-Sensors (WS) placed at the end of the blades for the last one. Their control model is progressively more complex. The first one takes into account a rigid simple behavior, the second control model considers the first mode of the drive-train flexibility, the third model takes into account the drive-train and tower flexibilities and the fourth that of the blades. Likewise, their optimization criteria consider for each controller a new control objective to alleviate fatigue loads in the drive-train, then, also in the tower and finally also in the blades. The evaluation of the fatigue loads affecting the WT components are based on a Rainflow Counting Algorithm (RFC) and the Miner's rule. The results indicate a significant reduction of fatigue loads especially in the drive-train and the blades when its flexibility is taken into account in the control models.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Comparison of wind turbine LQG controllers using Individual Pitch Control to alleviate fatigue loads\",\"authors\":\"S. Nourdine, H. Camblong, I. Vechiu, G. Tapia\",\"doi\":\"10.1109/MED.2010.5547822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the design of Linear Quadratic Gaussian (LQG) controllers for variable-speed horizontal axis Wind Turbines (WT). These turbines use blade pitch angle and electromagnetic torque control variables to meet specified objectives for Full Load (FL) zone. The main control objectives are to reduce structural dynamic loads and to regulate the power of the WT. The controllers are designed in order to optimize a trade-off between several control objectives. Four different LQG using Individual Pitch Control (IPC) are designed, with Wireless-Sensors (WS) placed at the end of the blades for the last one. Their control model is progressively more complex. The first one takes into account a rigid simple behavior, the second control model considers the first mode of the drive-train flexibility, the third model takes into account the drive-train and tower flexibilities and the fourth that of the blades. Likewise, their optimization criteria consider for each controller a new control objective to alleviate fatigue loads in the drive-train, then, also in the tower and finally also in the blades. The evaluation of the fatigue loads affecting the WT components are based on a Rainflow Counting Algorithm (RFC) and the Miner's rule. The results indicate a significant reduction of fatigue loads especially in the drive-train and the blades when its flexibility is taken into account in the control models.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

研究了变转速水平轴风力机线性二次高斯控制器的设计。这些涡轮机使用叶片俯仰角和电磁转矩控制变量来满足满载(FL)区的指定目标。主要的控制目标是减少结构动态载荷和调节小波变换的功率。控制器的设计是为了优化几个控制目标之间的权衡。设计了四个使用独立螺距控制(IPC)的不同LQG,最后一个LQG的叶片末端放置了无线传感器(WS)。它们的控制模型越来越复杂。第一个模型考虑了刚性简单行为,第二个模型考虑了传动系统柔性的第一种模式,第三个模型考虑了传动系统和塔架的柔性,第四个模型考虑了叶片的柔性。同样地,他们的优化标准为每个控制器考虑一个新的控制目标,以减轻传动系统的疲劳负荷,然后是塔架,最后是叶片。基于雨流计数算法(RFC)和Miner规则对影响WT构件的疲劳载荷进行评估。结果表明,当在控制模型中考虑其灵活性时,疲劳载荷显著降低,特别是在传动系统和叶片中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of wind turbine LQG controllers using Individual Pitch Control to alleviate fatigue loads
This paper focuses on the design of Linear Quadratic Gaussian (LQG) controllers for variable-speed horizontal axis Wind Turbines (WT). These turbines use blade pitch angle and electromagnetic torque control variables to meet specified objectives for Full Load (FL) zone. The main control objectives are to reduce structural dynamic loads and to regulate the power of the WT. The controllers are designed in order to optimize a trade-off between several control objectives. Four different LQG using Individual Pitch Control (IPC) are designed, with Wireless-Sensors (WS) placed at the end of the blades for the last one. Their control model is progressively more complex. The first one takes into account a rigid simple behavior, the second control model considers the first mode of the drive-train flexibility, the third model takes into account the drive-train and tower flexibilities and the fourth that of the blades. Likewise, their optimization criteria consider for each controller a new control objective to alleviate fatigue loads in the drive-train, then, also in the tower and finally also in the blades. The evaluation of the fatigue loads affecting the WT components are based on a Rainflow Counting Algorithm (RFC) and the Miner's rule. The results indicate a significant reduction of fatigue loads especially in the drive-train and the blades when its flexibility is taken into account in the control models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1