{"title":"用双电流斜率法估计同步磁阻电机的转子位置和转速","authors":"M. Wei, Tian‐Hua Liu","doi":"10.1109/ICIT.2011.5754368","DOIUrl":null,"url":null,"abstract":"This paper proposes a dual current-slope rotor position estimation and its relative sensorless closed-loop drive system for synchronous reluctance motors. First, the mathematical model of the synchronous reluctance motor is discussed. Then, a new rotor position/speed estimator of the synchronous reluctance motor is proposed. The proposed method uses dual current-slope to estimate the rotor position and rotor speed for a synchronous reluctance motor. In addition, the estimator can easily be realized and is unrelated to the motor parameters. The estimating technique does not require any extra hardware circuit when compared to the traditional drive system. A TMS-320F-28335 digital signal processor is used to execute the rotor position/speed estimation, the position or speed control algorithms, the d-q to a-b-c coordinate transformation, and the PWM switching strategy. The hardware circuit, therefore, is very simple. Several experimental results are provided to validate the theoretical analysis.","PeriodicalId":356868,"journal":{"name":"2011 IEEE International Conference on Industrial Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Rotor position and speed estimation for a synchronous reluctance motor drive using dual current-slope technique\",\"authors\":\"M. Wei, Tian‐Hua Liu\",\"doi\":\"10.1109/ICIT.2011.5754368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dual current-slope rotor position estimation and its relative sensorless closed-loop drive system for synchronous reluctance motors. First, the mathematical model of the synchronous reluctance motor is discussed. Then, a new rotor position/speed estimator of the synchronous reluctance motor is proposed. The proposed method uses dual current-slope to estimate the rotor position and rotor speed for a synchronous reluctance motor. In addition, the estimator can easily be realized and is unrelated to the motor parameters. The estimating technique does not require any extra hardware circuit when compared to the traditional drive system. A TMS-320F-28335 digital signal processor is used to execute the rotor position/speed estimation, the position or speed control algorithms, the d-q to a-b-c coordinate transformation, and the PWM switching strategy. The hardware circuit, therefore, is very simple. Several experimental results are provided to validate the theoretical analysis.\",\"PeriodicalId\":356868,\"journal\":{\"name\":\"2011 IEEE International Conference on Industrial Technology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2011.5754368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2011.5754368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rotor position and speed estimation for a synchronous reluctance motor drive using dual current-slope technique
This paper proposes a dual current-slope rotor position estimation and its relative sensorless closed-loop drive system for synchronous reluctance motors. First, the mathematical model of the synchronous reluctance motor is discussed. Then, a new rotor position/speed estimator of the synchronous reluctance motor is proposed. The proposed method uses dual current-slope to estimate the rotor position and rotor speed for a synchronous reluctance motor. In addition, the estimator can easily be realized and is unrelated to the motor parameters. The estimating technique does not require any extra hardware circuit when compared to the traditional drive system. A TMS-320F-28335 digital signal processor is used to execute the rotor position/speed estimation, the position or speed control algorithms, the d-q to a-b-c coordinate transformation, and the PWM switching strategy. The hardware circuit, therefore, is very simple. Several experimental results are provided to validate the theoretical analysis.