矿物油和天然酯类剪切粘度的温度依赖性

G. Bellis, L. Calcara, M. Pompili, M. S. Sarto
{"title":"矿物油和天然酯类剪切粘度的温度依赖性","authors":"G. Bellis, L. Calcara, M. Pompili, M. S. Sarto","doi":"10.1109/ICDL.2019.8796606","DOIUrl":null,"url":null,"abstract":"Over the past years, there has been an increasing interest in natural ester insulating liquids for application in power transformers, thanks to their higher environmental compatibility and lower fire point, as compared to conventional mineral oils. The main function of a transformer oil is its ability to dissipate heat, while ensuring electrical insulation. Among the various influencing parameters, it is well known that heat exchange in a liquid is also affected by its viscosity. Thus, the temperature dependence of the viscosity of an insulating oil should be carefully considered in the design of the cooling system of a power transformer. In this study the variation of the dynamic viscosity with temperature of commercially available natural esters and mineral oils is compared. Steady state rheological measurements are carried out, through a controlled shear rate rotational rheometer, in the 20°C ÷ 100° temperature range, under isothermal conditions. Temperature ramps are also performed, while fixing the shear rate, with the aim of investigating the variation of the steady shear dynamic viscosity over the whole temperature range. Results demonstrate that the viscosity of natural esters, though being higher at low temperatures, compared to mineral oils, strongly decreases for higher temperatures, thus favouring heat transfer and reducing the risk of hot-spots, which might lead to insulation-failures.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Temperature dependence of the shear viscosity of mineral oils and natural esters\",\"authors\":\"G. Bellis, L. Calcara, M. Pompili, M. S. Sarto\",\"doi\":\"10.1109/ICDL.2019.8796606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past years, there has been an increasing interest in natural ester insulating liquids for application in power transformers, thanks to their higher environmental compatibility and lower fire point, as compared to conventional mineral oils. The main function of a transformer oil is its ability to dissipate heat, while ensuring electrical insulation. Among the various influencing parameters, it is well known that heat exchange in a liquid is also affected by its viscosity. Thus, the temperature dependence of the viscosity of an insulating oil should be carefully considered in the design of the cooling system of a power transformer. In this study the variation of the dynamic viscosity with temperature of commercially available natural esters and mineral oils is compared. Steady state rheological measurements are carried out, through a controlled shear rate rotational rheometer, in the 20°C ÷ 100° temperature range, under isothermal conditions. Temperature ramps are also performed, while fixing the shear rate, with the aim of investigating the variation of the steady shear dynamic viscosity over the whole temperature range. Results demonstrate that the viscosity of natural esters, though being higher at low temperatures, compared to mineral oils, strongly decreases for higher temperatures, thus favouring heat transfer and reducing the risk of hot-spots, which might lead to insulation-failures.\",\"PeriodicalId\":102217,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2019.8796606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在过去的几年中,由于与传统矿物油相比,天然酯绝缘液体具有更高的环境兼容性和更低的燃点,因此人们对用于电力变压器的天然酯绝缘液体的兴趣越来越大。变压器油的主要功能是它的散热能力,同时保证电绝缘。在众多的影响参数中,众所周知,液体的热交换也受到其粘度的影响。因此,在设计电力变压器冷却系统时,应仔细考虑绝缘油粘度对温度的依赖性。本文比较了市售天然酯类和矿物油的动态粘度随温度的变化规律。在等温条件下,通过控制剪切速率的旋转流变仪,在20°C ÷ 100°的温度范围内进行稳态流变测量。在固定剪切速率的同时,还进行了温度渐变,目的是研究整个温度范围内稳定剪切动态粘度的变化。结果表明,与矿物油相比,天然酯的粘度虽然在低温下较高,但在高温下会大幅降低,从而有利于传热,降低可能导致绝缘失效的热点风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature dependence of the shear viscosity of mineral oils and natural esters
Over the past years, there has been an increasing interest in natural ester insulating liquids for application in power transformers, thanks to their higher environmental compatibility and lower fire point, as compared to conventional mineral oils. The main function of a transformer oil is its ability to dissipate heat, while ensuring electrical insulation. Among the various influencing parameters, it is well known that heat exchange in a liquid is also affected by its viscosity. Thus, the temperature dependence of the viscosity of an insulating oil should be carefully considered in the design of the cooling system of a power transformer. In this study the variation of the dynamic viscosity with temperature of commercially available natural esters and mineral oils is compared. Steady state rheological measurements are carried out, through a controlled shear rate rotational rheometer, in the 20°C ÷ 100° temperature range, under isothermal conditions. Temperature ramps are also performed, while fixing the shear rate, with the aim of investigating the variation of the steady shear dynamic viscosity over the whole temperature range. Results demonstrate that the viscosity of natural esters, though being higher at low temperatures, compared to mineral oils, strongly decreases for higher temperatures, thus favouring heat transfer and reducing the risk of hot-spots, which might lead to insulation-failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SF6 Gas Replacement in Pulsed High Voltage Coaxial Cables Electron Self-Trapping in Vortex Rings in Superfluid Helium Numerical Study of the Thermal Excitation Applied to a Dielectric Liquid Film Assessing the Production and Loss of Electrons from Conduction Currents in Mineral Oil The conformity of DGA interpretation techniques: Experience from transformer 132 units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1