S. Müksch, Theo X. Olausson, John Wilhelm, Pavlos Andreadis
{"title":"基于内存约束的图像分类算法的准确率基准测试","authors":"S. Müksch, Theo X. Olausson, John Wilhelm, Pavlos Andreadis","doi":"10.1109/SEC50012.2020.00059","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks, or CNNs, are the state of the art for image classification, but typically come at the cost of a large memory footprint. This limits their usefulness in edge computing applications, where memory is often a scarce resource. Recently, there has been significant progress in the field of image classification on such memory-constrained devices, with novel contributions like the ProtoNN, Bonsai and FastGRNN algorithms. These have been shown to reach up to 98.2% accuracy on optical character recognition using MNIST-10, with a memory footprint as little as 6KB. However, their potential on more complex multi-class and multi-channel image classification has yet to be determined. In this paper, we compare CNNs with ProtoNN, Bonsai and FastGRNN when applied to 3-channel image classification using CIFAR-10. For our analysis, we use the existing Direct Convolution algorithm to implement the CNNs memory-optimally and propose new methods of adjusting the FastGRNN model to work with multi-channel images. We extend the evaluation of each algorithm to a memory size budget of 8KB, 16KB, 32KB, 64KB and 128KB to show quantitatively that Direct Convolution CNNs perform best for all chosen budgets, with a top performance of 65.7% accuracy at a memory footprint of 58.23KB.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Benchmarking the Accuracy of Algorithms for Memory-Constrained Image Classification\",\"authors\":\"S. Müksch, Theo X. Olausson, John Wilhelm, Pavlos Andreadis\",\"doi\":\"10.1109/SEC50012.2020.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks, or CNNs, are the state of the art for image classification, but typically come at the cost of a large memory footprint. This limits their usefulness in edge computing applications, where memory is often a scarce resource. Recently, there has been significant progress in the field of image classification on such memory-constrained devices, with novel contributions like the ProtoNN, Bonsai and FastGRNN algorithms. These have been shown to reach up to 98.2% accuracy on optical character recognition using MNIST-10, with a memory footprint as little as 6KB. However, their potential on more complex multi-class and multi-channel image classification has yet to be determined. In this paper, we compare CNNs with ProtoNN, Bonsai and FastGRNN when applied to 3-channel image classification using CIFAR-10. For our analysis, we use the existing Direct Convolution algorithm to implement the CNNs memory-optimally and propose new methods of adjusting the FastGRNN model to work with multi-channel images. We extend the evaluation of each algorithm to a memory size budget of 8KB, 16KB, 32KB, 64KB and 128KB to show quantitatively that Direct Convolution CNNs perform best for all chosen budgets, with a top performance of 65.7% accuracy at a memory footprint of 58.23KB.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benchmarking the Accuracy of Algorithms for Memory-Constrained Image Classification
Convolutional Neural Networks, or CNNs, are the state of the art for image classification, but typically come at the cost of a large memory footprint. This limits their usefulness in edge computing applications, where memory is often a scarce resource. Recently, there has been significant progress in the field of image classification on such memory-constrained devices, with novel contributions like the ProtoNN, Bonsai and FastGRNN algorithms. These have been shown to reach up to 98.2% accuracy on optical character recognition using MNIST-10, with a memory footprint as little as 6KB. However, their potential on more complex multi-class and multi-channel image classification has yet to be determined. In this paper, we compare CNNs with ProtoNN, Bonsai and FastGRNN when applied to 3-channel image classification using CIFAR-10. For our analysis, we use the existing Direct Convolution algorithm to implement the CNNs memory-optimally and propose new methods of adjusting the FastGRNN model to work with multi-channel images. We extend the evaluation of each algorithm to a memory size budget of 8KB, 16KB, 32KB, 64KB and 128KB to show quantitatively that Direct Convolution CNNs perform best for all chosen budgets, with a top performance of 65.7% accuracy at a memory footprint of 58.23KB.