考虑过程变化和噪声的基于记忆电阻的交叉条神经形态计算统计训练

Ying Zhu, Grace Li Zhang, Tianchen Wang, Bing Li, Yiyu Shi, Tsung-Yi Ho, Ulf Schlichtmann
{"title":"考虑过程变化和噪声的基于记忆电阻的交叉条神经形态计算统计训练","authors":"Ying Zhu, Grace Li Zhang, Tianchen Wang, Bing Li, Yiyu Shi, Tsung-Yi Ho, Ulf Schlichtmann","doi":"10.23919/DATE48585.2020.9116244","DOIUrl":null,"url":null,"abstract":"Memristor-based crossbars are an attractive platform to accelerate neuromorphic computing. However, process variations during manufacturing and noise in memristors cause significant accuracy loss if not addressed. In this paper, we propose to model process variations and noise as correlated random variables and incorporate them into the cost function during training. Consequently, the weights after this statistical training become more robust and together with global variation compensation provide a stable inference accuracy. Simulation results demonstrate that the mean value and the standard deviation of the inference accuracy can be improved significantly, by even up to 54% and 31%, respectively, in a two-layer fully connected neural network.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Statistical Training for Neuromorphic Computing using Memristor-based Crossbars Considering Process Variations and Noise\",\"authors\":\"Ying Zhu, Grace Li Zhang, Tianchen Wang, Bing Li, Yiyu Shi, Tsung-Yi Ho, Ulf Schlichtmann\",\"doi\":\"10.23919/DATE48585.2020.9116244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor-based crossbars are an attractive platform to accelerate neuromorphic computing. However, process variations during manufacturing and noise in memristors cause significant accuracy loss if not addressed. In this paper, we propose to model process variations and noise as correlated random variables and incorporate them into the cost function during training. Consequently, the weights after this statistical training become more robust and together with global variation compensation provide a stable inference accuracy. Simulation results demonstrate that the mean value and the standard deviation of the inference accuracy can be improved significantly, by even up to 54% and 31%, respectively, in a two-layer fully connected neural network.\",\"PeriodicalId\":289525,\"journal\":{\"name\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE48585.2020.9116244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

基于忆阻器的交叉栅是一种很有吸引力的加速神经形态计算的平台。然而,如果不加以解决,制造过程中的工艺变化和忆阻器中的噪声会导致显著的精度损失。在本文中,我们建议将过程变化和噪声作为相关随机变量建模,并在训练过程中将它们纳入成本函数中。因此,经过统计训练后的权重变得更加鲁棒,并结合全局变差补偿提供了稳定的推理精度。仿真结果表明,在两层全连接神经网络中,推理精度的均值和标准差可以显著提高,分别提高54%和31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Training for Neuromorphic Computing using Memristor-based Crossbars Considering Process Variations and Noise
Memristor-based crossbars are an attractive platform to accelerate neuromorphic computing. However, process variations during manufacturing and noise in memristors cause significant accuracy loss if not addressed. In this paper, we propose to model process variations and noise as correlated random variables and incorporate them into the cost function during training. Consequently, the weights after this statistical training become more robust and together with global variation compensation provide a stable inference accuracy. Simulation results demonstrate that the mean value and the standard deviation of the inference accuracy can be improved significantly, by even up to 54% and 31%, respectively, in a two-layer fully connected neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1