{"title":"电磁波的各向异性传播","authors":"Gregory A. Mitchell","doi":"10.5772/INTECHOPEN.75123","DOIUrl":null,"url":null,"abstract":"This chapter will analyze the properties of electromagnetic wave propagation in anisotropic media. Of particular interest are positive index, anisotropic, and magneto-dielectric media. Engineered anisotropic media provide unique electromagnetic properties including a higher effective refractive index, high permeability with relatively low magnetic loss tangent at microwave frequencies, and lower density and weight than traditional media. This chapter presents research including plane wave solutions to propagation in anisotropic media, a mathematical derivation of birefringence in anisotropic media, modal decomposition of rectangular waveguides filled with anisotropic media, and the full derivation of anisotropic transverse resonance in a partially loaded waveguide. These are fundamental theories in the area of electromagnetic wave propagation that have been reformulated for fully anisotropic magneto-dielectric media. The ensuing results will aide interested parties in understanding wave behavior for anisotropic media to enhance designs for radio frequency devices based on anisotropic and magnetic media.","PeriodicalId":212695,"journal":{"name":"Antennas and Wave Propagation","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anisotropic Propagation of Electromagnetic Waves\",\"authors\":\"Gregory A. Mitchell\",\"doi\":\"10.5772/INTECHOPEN.75123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter will analyze the properties of electromagnetic wave propagation in anisotropic media. Of particular interest are positive index, anisotropic, and magneto-dielectric media. Engineered anisotropic media provide unique electromagnetic properties including a higher effective refractive index, high permeability with relatively low magnetic loss tangent at microwave frequencies, and lower density and weight than traditional media. This chapter presents research including plane wave solutions to propagation in anisotropic media, a mathematical derivation of birefringence in anisotropic media, modal decomposition of rectangular waveguides filled with anisotropic media, and the full derivation of anisotropic transverse resonance in a partially loaded waveguide. These are fundamental theories in the area of electromagnetic wave propagation that have been reformulated for fully anisotropic magneto-dielectric media. The ensuing results will aide interested parties in understanding wave behavior for anisotropic media to enhance designs for radio frequency devices based on anisotropic and magnetic media.\",\"PeriodicalId\":212695,\"journal\":{\"name\":\"Antennas and Wave Propagation\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antennas and Wave Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.75123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antennas and Wave Propagation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter will analyze the properties of electromagnetic wave propagation in anisotropic media. Of particular interest are positive index, anisotropic, and magneto-dielectric media. Engineered anisotropic media provide unique electromagnetic properties including a higher effective refractive index, high permeability with relatively low magnetic loss tangent at microwave frequencies, and lower density and weight than traditional media. This chapter presents research including plane wave solutions to propagation in anisotropic media, a mathematical derivation of birefringence in anisotropic media, modal decomposition of rectangular waveguides filled with anisotropic media, and the full derivation of anisotropic transverse resonance in a partially loaded waveguide. These are fundamental theories in the area of electromagnetic wave propagation that have been reformulated for fully anisotropic magneto-dielectric media. The ensuing results will aide interested parties in understanding wave behavior for anisotropic media to enhance designs for radio frequency devices based on anisotropic and magnetic media.