基于gpu的列数据库快速查询处理组合分组和聚合算法研究

S. Meraji, John Keenleyside, Sunil Kamath, Bob Blainey
{"title":"基于gpu的列数据库快速查询处理组合分组和聚合算法研究","authors":"S. Meraji, John Keenleyside, Sunil Kamath, Bob Blainey","doi":"10.1109/IPDPSW.2015.21","DOIUrl":null,"url":null,"abstract":"Column-store in-memory databases have received a lot of attention because of their fast query processing response times on modern multi-core machines. Among different database operations, group by/aggregate is an important and potentially costly operation. Moreover, sort-based and hash-based algorithms are the most common ways of processing group by/aggregate queries. While sort-based algorithms are used in traditional Data Base Management Systems (DBMS), hash based algorithms can be applied for faster query processing in new columnar databases. Besides, Graphical Processing Units (GPU) can be utilized as fast, high bandwidth co-processors to improve the query processing performance of columnar databases. The focus of this article is on the prototype for group by/aggregate operations that we created to exploit GPUs. We show different hash based algorithms to improve the performance of group by/aggregate operations on GPU. One of the parameters that affect the performance of the group by/aggregate algorithm is the number of groups and hashing algorithm. We show that we can get up to 7.6x improvement in kernel performance compared to a multi-core CPU implementation when we use a partitioned multi-level hash algorithm using GPU shared and global memories.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards a Combined Grouping and Aggregation Algorithm for Fast Query Processing in Columnar Databases with GPUs\",\"authors\":\"S. Meraji, John Keenleyside, Sunil Kamath, Bob Blainey\",\"doi\":\"10.1109/IPDPSW.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Column-store in-memory databases have received a lot of attention because of their fast query processing response times on modern multi-core machines. Among different database operations, group by/aggregate is an important and potentially costly operation. Moreover, sort-based and hash-based algorithms are the most common ways of processing group by/aggregate queries. While sort-based algorithms are used in traditional Data Base Management Systems (DBMS), hash based algorithms can be applied for faster query processing in new columnar databases. Besides, Graphical Processing Units (GPU) can be utilized as fast, high bandwidth co-processors to improve the query processing performance of columnar databases. The focus of this article is on the prototype for group by/aggregate operations that we created to exploit GPUs. We show different hash based algorithms to improve the performance of group by/aggregate operations on GPU. One of the parameters that affect the performance of the group by/aggregate algorithm is the number of groups and hashing algorithm. We show that we can get up to 7.6x improvement in kernel performance compared to a multi-core CPU implementation when we use a partitioned multi-level hash algorithm using GPU shared and global memories.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

列存储内存数据库由于其在现代多核机器上的快速查询处理响应时间而受到了广泛关注。在不同的数据库操作中,分组/聚合是一种重要且可能代价高昂的操作。此外,基于排序和基于散列的算法是处理分组/聚合查询的最常用方法。传统的数据库管理系统(DBMS)中使用基于排序的算法,而在新的列式数据库中,基于散列的算法可以用于更快的查询处理。此外,图形处理单元(GPU)可以作为快速、高带宽的协处理器来提高列式数据库的查询处理性能。本文的重点是我们为利用gpu而创建的分组/聚合操作的原型。我们展示了不同的基于哈希的算法来提高GPU上分组/聚合操作的性能。影响group by/aggregate算法性能的参数之一是组的数量和散列算法。我们表明,当我们使用GPU共享和全局内存的分区多级哈希算法时,与多核CPU实现相比,我们可以获得7.6倍的内核性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Combined Grouping and Aggregation Algorithm for Fast Query Processing in Columnar Databases with GPUs
Column-store in-memory databases have received a lot of attention because of their fast query processing response times on modern multi-core machines. Among different database operations, group by/aggregate is an important and potentially costly operation. Moreover, sort-based and hash-based algorithms are the most common ways of processing group by/aggregate queries. While sort-based algorithms are used in traditional Data Base Management Systems (DBMS), hash based algorithms can be applied for faster query processing in new columnar databases. Besides, Graphical Processing Units (GPU) can be utilized as fast, high bandwidth co-processors to improve the query processing performance of columnar databases. The focus of this article is on the prototype for group by/aggregate operations that we created to exploit GPUs. We show different hash based algorithms to improve the performance of group by/aggregate operations on GPU. One of the parameters that affect the performance of the group by/aggregate algorithm is the number of groups and hashing algorithm. We show that we can get up to 7.6x improvement in kernel performance compared to a multi-core CPU implementation when we use a partitioned multi-level hash algorithm using GPU shared and global memories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1