基于卷积神经网络的作物病害分类优化

Kit Guan Lim, Chii Soon Huong, M. K. Tan, C. F. Liau, Min Yang, K. Teo
{"title":"基于卷积神经网络的作物病害分类优化","authors":"Kit Guan Lim, Chii Soon Huong, M. K. Tan, C. F. Liau, Min Yang, K. Teo","doi":"10.1109/IICAIET51634.2021.9573934","DOIUrl":null,"url":null,"abstract":"This paper presents the deep learning model by Convolution Neural Network (CNN) in training the crop disease classifier via image classification. A camera will be equipped and applied in artificial intelligent drone to operate as a crop monitoring system used for agriculture. Agriculture productivity is a key component of country economy. Crop diseases can lead to a drop in the quality and quantity of agricultural products. Famers are facing problems to detect the crop diseases accurately in huge region of crops. Therefore, CNN based method for crop disease detection is proposed. Dataset contains of 16,257 color images which has a total of categories have been fed into the model, out of which 10 categories are of diseased crop leaves. The CNN model contains 7 convolution layers with the number of filters 32, 64, two layers with 128 filters, three layers with 256 filters and filter size $3\\times 3$ is the proposed approach to perform crop disease classification, with the best testing accuracy of 99.02%. The crops are classified correctly using the suggested CNN design. The suggested CNN design is validated and evaluated which achieves accuracy of 99.02%, 0.98% error, 99% recall, 99% precision and 0.99 score of F-measure. In this paper, achievement of the proposed CNN model is reaching a promising result and simulated successfully in classifying the crop disease.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Crop Disease Classification using Convolution Neural Network\",\"authors\":\"Kit Guan Lim, Chii Soon Huong, M. K. Tan, C. F. Liau, Min Yang, K. Teo\",\"doi\":\"10.1109/IICAIET51634.2021.9573934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the deep learning model by Convolution Neural Network (CNN) in training the crop disease classifier via image classification. A camera will be equipped and applied in artificial intelligent drone to operate as a crop monitoring system used for agriculture. Agriculture productivity is a key component of country economy. Crop diseases can lead to a drop in the quality and quantity of agricultural products. Famers are facing problems to detect the crop diseases accurately in huge region of crops. Therefore, CNN based method for crop disease detection is proposed. Dataset contains of 16,257 color images which has a total of categories have been fed into the model, out of which 10 categories are of diseased crop leaves. The CNN model contains 7 convolution layers with the number of filters 32, 64, two layers with 128 filters, three layers with 256 filters and filter size $3\\\\times 3$ is the proposed approach to perform crop disease classification, with the best testing accuracy of 99.02%. The crops are classified correctly using the suggested CNN design. The suggested CNN design is validated and evaluated which achieves accuracy of 99.02%, 0.98% error, 99% recall, 99% precision and 0.99 score of F-measure. In this paper, achievement of the proposed CNN model is reaching a promising result and simulated successfully in classifying the crop disease.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了基于卷积神经网络(CNN)的深度学习模型,通过图像分类训练农作物病害分类器。将在人工智能无人机上安装摄像头,作为农业作物监控系统使用。农业生产力是国家经济的重要组成部分。农作物病害会导致农产品的质量和数量下降。大面积作物病害的准确检测是农民面临的难题。因此,提出了基于CNN的农作物病害检测方法。数据集包含16257张彩色图像,总共有10个类别被输入到模型中,其中10个类别是患病的作物叶片。CNN模型包含7个卷积层,滤波器个数分别为32个、64个、2层128个、3层256个,滤波器大小为$3 × 3$是本文提出的作物病害分类方法,测试准确率最高为99.02%。使用建议的CNN设计对作物进行正确分类。对所提出的CNN设计进行了验证和评价,准确率为99.02%,误差为0.98%,召回率为99%,精密度为99%,F-measure得分为0.99。本文所提出的CNN模型在作物病害分类中取得了很好的效果,并成功地进行了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Crop Disease Classification using Convolution Neural Network
This paper presents the deep learning model by Convolution Neural Network (CNN) in training the crop disease classifier via image classification. A camera will be equipped and applied in artificial intelligent drone to operate as a crop monitoring system used for agriculture. Agriculture productivity is a key component of country economy. Crop diseases can lead to a drop in the quality and quantity of agricultural products. Famers are facing problems to detect the crop diseases accurately in huge region of crops. Therefore, CNN based method for crop disease detection is proposed. Dataset contains of 16,257 color images which has a total of categories have been fed into the model, out of which 10 categories are of diseased crop leaves. The CNN model contains 7 convolution layers with the number of filters 32, 64, two layers with 128 filters, three layers with 256 filters and filter size $3\times 3$ is the proposed approach to perform crop disease classification, with the best testing accuracy of 99.02%. The crops are classified correctly using the suggested CNN design. The suggested CNN design is validated and evaluated which achieves accuracy of 99.02%, 0.98% error, 99% recall, 99% precision and 0.99 score of F-measure. In this paper, achievement of the proposed CNN model is reaching a promising result and simulated successfully in classifying the crop disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach Eye-Tank: Monitoring and Predicting Water and pH Level in Smart Farming Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network Multi-Scale Texture Analysis For Finger Vein Anti-Spoofing Utilization of Response Surface Methodology and Regression Model in Optimizing Bioretention Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1