设计和构建具有不间断供电能力的直流微电网,并通过智能控制系统优化其能源利用

H. De Zoysa, P. Guruge, S. Kalingamudali, N. Kularatna, Gihan Kanishka
{"title":"设计和构建具有不间断供电能力的直流微电网,并通过智能控制系统优化其能源利用","authors":"H. De Zoysa, P. Guruge, S. Kalingamudali, N. Kularatna, Gihan Kanishka","doi":"10.1109/IESES.2018.8349901","DOIUrl":null,"url":null,"abstract":"This paper outlines the methodology of designing and implementation of a solar powered system which can be used to make a human comfort zone during day time without using battery backup but with the use of Supercapacitors. Basically, major converter losses are reduced in this system. In acquiring a highly efficient power supply, the charge controller plays an important role. When a DC microgrid powers DC loads based on a renewable source such as a PV system; energy storage becomes mandatory due to fluctuating nature of the source. Localized DC-energy storage within DC-DC converters could address this requirement. A variation of supercapacitor assisted regulators could provide localized energy storage with low-noise and fast transient response [1]. 12 V LED lights will be powered from this system. LEDs can be powered directly via a supercapacitor bank from the regulated Photovoltaic energy. In the case of Inverter type Air Conditioner, in order to overcome converter losses, the DC Bus inside it should be accessed. Typically, DC Bus voltage inside the Variable Frequency Drive (VFD) is 1–414 times the supply voltage. Hence DC-DC Converters are used to power up the inside circuitry of the Inverter Air Conditioner from the solar panel. In order to optimize the energy usage and reduce electricity consumption, light dimming and air conditioning control systems were added to control the light intensity and switching of the air conditioner.","PeriodicalId":146951,"journal":{"name":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Designing and constructing a DC microgrid with uninterrupted power supply capability and optimizing its energy usage by smart controlling system\",\"authors\":\"H. De Zoysa, P. Guruge, S. Kalingamudali, N. Kularatna, Gihan Kanishka\",\"doi\":\"10.1109/IESES.2018.8349901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the methodology of designing and implementation of a solar powered system which can be used to make a human comfort zone during day time without using battery backup but with the use of Supercapacitors. Basically, major converter losses are reduced in this system. In acquiring a highly efficient power supply, the charge controller plays an important role. When a DC microgrid powers DC loads based on a renewable source such as a PV system; energy storage becomes mandatory due to fluctuating nature of the source. Localized DC-energy storage within DC-DC converters could address this requirement. A variation of supercapacitor assisted regulators could provide localized energy storage with low-noise and fast transient response [1]. 12 V LED lights will be powered from this system. LEDs can be powered directly via a supercapacitor bank from the regulated Photovoltaic energy. In the case of Inverter type Air Conditioner, in order to overcome converter losses, the DC Bus inside it should be accessed. Typically, DC Bus voltage inside the Variable Frequency Drive (VFD) is 1–414 times the supply voltage. Hence DC-DC Converters are used to power up the inside circuitry of the Inverter Air Conditioner from the solar panel. In order to optimize the energy usage and reduce electricity consumption, light dimming and air conditioning control systems were added to control the light intensity and switching of the air conditioner.\",\"PeriodicalId\":146951,\"journal\":{\"name\":\"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESES.2018.8349901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES.2018.8349901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文概述了一种太阳能供电系统的设计和实现方法,该系统可以在白天不使用备用电池而使用超级电容器来制造人体舒适区。基本上,在这个系统中,主要的转换器损耗减少了。为了获得高效的电源,充电控制器起着重要的作用。当直流微电网为基于可再生能源(如光伏系统)的直流负载供电时;由于能源的波动性质,能源储存成为强制性的。DC-DC转换器内的局部dc能量存储可以满足这一要求。一种超级电容器辅助调节器的变化可以提供低噪声和快速瞬态响应的局部储能[1]。该系统将为12 V LED灯供电。led可以直接通过超级电容器组从调节的光伏能量供电。对于逆变式空调,为了克服变换器的损耗,应接入其内部的直流母线。通常,变频器(VFD)内部的直流母线电压是电源电压的1-414倍。因此,DC-DC转换器用于从太阳能电池板为逆变器空调的内部电路供电。为了优化能源使用,减少电力消耗,增加了调光和空调控制系统,以控制空调的光强和开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing and constructing a DC microgrid with uninterrupted power supply capability and optimizing its energy usage by smart controlling system
This paper outlines the methodology of designing and implementation of a solar powered system which can be used to make a human comfort zone during day time without using battery backup but with the use of Supercapacitors. Basically, major converter losses are reduced in this system. In acquiring a highly efficient power supply, the charge controller plays an important role. When a DC microgrid powers DC loads based on a renewable source such as a PV system; energy storage becomes mandatory due to fluctuating nature of the source. Localized DC-energy storage within DC-DC converters could address this requirement. A variation of supercapacitor assisted regulators could provide localized energy storage with low-noise and fast transient response [1]. 12 V LED lights will be powered from this system. LEDs can be powered directly via a supercapacitor bank from the regulated Photovoltaic energy. In the case of Inverter type Air Conditioner, in order to overcome converter losses, the DC Bus inside it should be accessed. Typically, DC Bus voltage inside the Variable Frequency Drive (VFD) is 1–414 times the supply voltage. Hence DC-DC Converters are used to power up the inside circuitry of the Inverter Air Conditioner from the solar panel. In order to optimize the energy usage and reduce electricity consumption, light dimming and air conditioning control systems were added to control the light intensity and switching of the air conditioner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing standardization needs for CHIL-based testing of power systems and components Performance analysis of a wearable photovoltaic system Detection of high impedance faults in PV systems using mathematical morphology Design and control of a novel omnidirectional dynamically balancing platform for remote inspection of confined and cluttered environments Hybrid UP-PWM for single-phase transformerless photovoltaic inverter to improve zero-crossing distortion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1