{"title":"视障导盲犬机器人系统研究","authors":"Yuanlong Wei, Mincheol Lee","doi":"10.1109/ICIT.2014.6894906","DOIUrl":null,"url":null,"abstract":"This paper presents a development of guide-dog robot system for visually impaired. Based on a hall-sensor joystick and ultrasonic sensors, a “smart rope” system is designed for the human-robot interaction. In this system, multiple functions are provided for the self-walking in urban system, such as following, navigation and obstacle avoidance. To distinguish between small involuntary force and the intended navigational movement, a fuzzy logic control method is applied to improve the accuracy for the “smart rope” system manipulation. To compensate the lack of visual sense of visually impaired, a smart phone with camera is utilized as the robot vision, in order to detect the traffic lights and the zebra crossing. A fast vision recognition approach is provided based on Adaboosting and Template matching combined algorithm. For the evaluation of proposed method, an integrated system is implemented to the mobile robot platform. The performance of both interactive system and vision system are analyzed after the experiment in the urban environment. System's accuracy, usefulness and adaptability are verified. The experimental results showed that this new designed guide-dog robot system is suitable and effective to assist the visually impaired for the self-walking.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A guide-dog robot system research for the visually impaired\",\"authors\":\"Yuanlong Wei, Mincheol Lee\",\"doi\":\"10.1109/ICIT.2014.6894906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a development of guide-dog robot system for visually impaired. Based on a hall-sensor joystick and ultrasonic sensors, a “smart rope” system is designed for the human-robot interaction. In this system, multiple functions are provided for the self-walking in urban system, such as following, navigation and obstacle avoidance. To distinguish between small involuntary force and the intended navigational movement, a fuzzy logic control method is applied to improve the accuracy for the “smart rope” system manipulation. To compensate the lack of visual sense of visually impaired, a smart phone with camera is utilized as the robot vision, in order to detect the traffic lights and the zebra crossing. A fast vision recognition approach is provided based on Adaboosting and Template matching combined algorithm. For the evaluation of proposed method, an integrated system is implemented to the mobile robot platform. The performance of both interactive system and vision system are analyzed after the experiment in the urban environment. System's accuracy, usefulness and adaptability are verified. The experimental results showed that this new designed guide-dog robot system is suitable and effective to assist the visually impaired for the self-walking.\",\"PeriodicalId\":240337,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.6894906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6894906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A guide-dog robot system research for the visually impaired
This paper presents a development of guide-dog robot system for visually impaired. Based on a hall-sensor joystick and ultrasonic sensors, a “smart rope” system is designed for the human-robot interaction. In this system, multiple functions are provided for the self-walking in urban system, such as following, navigation and obstacle avoidance. To distinguish between small involuntary force and the intended navigational movement, a fuzzy logic control method is applied to improve the accuracy for the “smart rope” system manipulation. To compensate the lack of visual sense of visually impaired, a smart phone with camera is utilized as the robot vision, in order to detect the traffic lights and the zebra crossing. A fast vision recognition approach is provided based on Adaboosting and Template matching combined algorithm. For the evaluation of proposed method, an integrated system is implemented to the mobile robot platform. The performance of both interactive system and vision system are analyzed after the experiment in the urban environment. System's accuracy, usefulness and adaptability are verified. The experimental results showed that this new designed guide-dog robot system is suitable and effective to assist the visually impaired for the self-walking.