M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson
{"title":"基于多核平台片上内存优化的缓冲区分配","authors":"M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson","doi":"10.1109/IPDPSW.2015.67","DOIUrl":null,"url":null,"abstract":"The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Buffer Allocation Based On-Chip Memory Optimization for Many-Core Platforms\",\"authors\":\"M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson\",\"doi\":\"10.1109/IPDPSW.2015.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Buffer Allocation Based On-Chip Memory Optimization for Many-Core Platforms
The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.