Libdft:用于商品系统的实用动态数据流跟踪

V. Kemerlis, G. Portokalidis, Kangkook Jee, A. Keromytis
{"title":"Libdft:用于商品系统的实用动态数据流跟踪","authors":"V. Kemerlis, G. Portokalidis, Kangkook Jee, A. Keromytis","doi":"10.1145/2151024.2151042","DOIUrl":null,"url":null,"abstract":"Dynamic data flow tracking (DFT) deals with tagging and tracking data of interest as they propagate during program execution. DFT has been repeatedly implemented by a variety of tools for numerous purposes, including protection from zero-day and cross-site scripting attacks, detection and prevention of information leaks, and for the analysis of legitimate and malicious software. We present libdft, a dynamic DFT framework that unlike previous work is at once fast, reusable, and works with commodity software and hardware. libdft provides an API for building DFT-enabled tools that work on unmodified binaries, running on common operating systems and hardware, thus facilitating research and rapid prototyping. We explore different approaches for implementing the low-level aspects of instruction-level data tracking, introduce a more efficient and 64-bit capable shadow memory, and identify (and avoid) the common pitfalls responsible for the excessive performance overhead of previous studies. We evaluate libdft using real applications with large codebases like the Apache and MySQL servers, and the Firefox web browser. We also use a series of benchmarks and utilities to compare libdft with similar systems. Our results indicate that it performs at least as fast, if not faster, than previous solutions, and to the best of our knowledge, we are the first to evaluate the performance overhead of a fast dynamic DFT implementation in such depth. Finally, libdft is freely available as open source software.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"libdft: practical dynamic data flow tracking for commodity systems\",\"authors\":\"V. Kemerlis, G. Portokalidis, Kangkook Jee, A. Keromytis\",\"doi\":\"10.1145/2151024.2151042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic data flow tracking (DFT) deals with tagging and tracking data of interest as they propagate during program execution. DFT has been repeatedly implemented by a variety of tools for numerous purposes, including protection from zero-day and cross-site scripting attacks, detection and prevention of information leaks, and for the analysis of legitimate and malicious software. We present libdft, a dynamic DFT framework that unlike previous work is at once fast, reusable, and works with commodity software and hardware. libdft provides an API for building DFT-enabled tools that work on unmodified binaries, running on common operating systems and hardware, thus facilitating research and rapid prototyping. We explore different approaches for implementing the low-level aspects of instruction-level data tracking, introduce a more efficient and 64-bit capable shadow memory, and identify (and avoid) the common pitfalls responsible for the excessive performance overhead of previous studies. We evaluate libdft using real applications with large codebases like the Apache and MySQL servers, and the Firefox web browser. We also use a series of benchmarks and utilities to compare libdft with similar systems. Our results indicate that it performs at least as fast, if not faster, than previous solutions, and to the best of our knowledge, we are the first to evaluate the performance overhead of a fast dynamic DFT implementation in such depth. Finally, libdft is freely available as open source software.\",\"PeriodicalId\":202844,\"journal\":{\"name\":\"International Conference on Virtual Execution Environments\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2151024.2151042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2151024.2151042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

动态数据流跟踪(DFT)处理在程序执行期间传播的感兴趣数据的标记和跟踪。DFT已被多种工具反复实现,用于多种目的,包括防止零日攻击和跨站点脚本攻击,检测和预防信息泄漏,以及分析合法和恶意软件。我们提出了libdft,这是一个动态DFT框架,与以前的工作不同,它既快速又可重用,并且可以使用商用软件和硬件。libdft提供了一个API,用于构建支持dft的工具,这些工具可以在未修改的二进制文件上工作,运行在通用的操作系统和硬件上,从而促进研究和快速原型设计。我们探索了实现指令级数据跟踪的低级方面的不同方法,引入了更高效且支持64位的影子内存,并识别(并避免)导致先前研究中过度性能开销的常见陷阱。我们使用具有大型代码库的实际应用程序(如Apache和MySQL服务器)以及Firefox web浏览器来评估libdft。我们还使用一系列基准测试和实用程序将libdft与类似的系统进行比较。我们的结果表明,它的执行速度至少与以前的解决方案一样快,如果不是更快的话,并且据我们所知,我们是第一个在这种深度上评估快速动态DFT实现的性能开销的人。最后,libdft是免费的开源软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
libdft: practical dynamic data flow tracking for commodity systems
Dynamic data flow tracking (DFT) deals with tagging and tracking data of interest as they propagate during program execution. DFT has been repeatedly implemented by a variety of tools for numerous purposes, including protection from zero-day and cross-site scripting attacks, detection and prevention of information leaks, and for the analysis of legitimate and malicious software. We present libdft, a dynamic DFT framework that unlike previous work is at once fast, reusable, and works with commodity software and hardware. libdft provides an API for building DFT-enabled tools that work on unmodified binaries, running on common operating systems and hardware, thus facilitating research and rapid prototyping. We explore different approaches for implementing the low-level aspects of instruction-level data tracking, introduce a more efficient and 64-bit capable shadow memory, and identify (and avoid) the common pitfalls responsible for the excessive performance overhead of previous studies. We evaluate libdft using real applications with large codebases like the Apache and MySQL servers, and the Firefox web browser. We also use a series of benchmarks and utilities to compare libdft with similar systems. Our results indicate that it performs at least as fast, if not faster, than previous solutions, and to the best of our knowledge, we are the first to evaluate the performance overhead of a fast dynamic DFT implementation in such depth. Finally, libdft is freely available as open source software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shrinking the hypervisor one subsystem at a time: a userspace packet switch for virtual machines A fast abstract syntax tree interpreter for R DBILL: an efficient and retargetable dynamic binary instrumentation framework using llvm backend Ginseng: market-driven memory allocation Tesseract: reconciling guest I/O and hypervisor swapping in a VM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1