自适应信号表示:多少是太多?

D. Donoho
{"title":"自适应信号表示:多少是太多?","authors":"D. Donoho","doi":"10.1109/WITS.1994.513884","DOIUrl":null,"url":null,"abstract":"Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive signal representations: How much is too much?\",\"authors\":\"D. Donoho\",\"doi\":\"10.1109/WITS.1994.513884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过完备的波形库中自适应信号表示已经非常流行。人们自然会期望,在搜索大量噪声数据的信号表示时,人们可能会在数据中识别出明显的结构,而这些结构最终被证明是虚假的、噪声诱发的伪像。我们将展示如何使用基于库复杂性对数的惩罚来缓和搜索,防止此类虚假结构,并提供接近理想的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive signal representations: How much is too much?
Adaptive signal representations in overcomplete libraries of waveforms have been very popular. One naturally expects that in searching through a large number of signal representations for noisy data, one is at risk of identifying apparent structure in the data which turns out to be spurious, noise-induced artifacts. We show how to use penalties based on the logarithm of library complexity to temper the search, preventing such spurious structure, and giving near-ideal behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1