{"title":"算法单一文化与社会福利","authors":"𝜃 𝜀","doi":"10.1145/3603195.3603211","DOIUrl":null,"url":null,"abstract":"Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is","PeriodicalId":256315,"journal":{"name":"The Societal Impacts of Algorithmic Decision-Making","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic Monoculture and Social Welfare\",\"authors\":\"𝜃 𝜀\",\"doi\":\"10.1145/3603195.3603211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is\",\"PeriodicalId\":256315,\"journal\":{\"name\":\"The Societal Impacts of Algorithmic Decision-Making\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Societal Impacts of Algorithmic Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603195.3603211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Societal Impacts of Algorithmic Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603195.3603211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
证明。我们需要证明Fθ满足定义6.1中的可微性、渐近最优性和单调性条件。可微性:n个噪声样本εi/θ的任意实现的概率密度为∏n i=1 f (εi/θ)。令ε = [ε1/θ,…], εn/θ]为噪声值向量,设M(π)任一个ε∈M(π)都能产生排序π的域。任意排列的概率π是
Proof. We need to show that Fθ satisfies the differentiability, asymptotic optimality, and monotonicity conditions in Definition 6.1. Differentiability: The probability density of any realization of the n noise samples εi/θ is ∏ n i=1 f (εi/θ). Let ε = [ε1/θ, ... , εn/θ] be the vector of noise values and let M(π) ⊆ Rn be the region such that any ε ∈ M(π) will produce the ranking π. The probability of any permutation π is