测量在开普勒gpu上运行的程序的功率和能耗

Muhammad Jawad Ikram, O. Abulnaja, M. Saleh, M. Al-Hashimi
{"title":"测量在开普勒gpu上运行的程序的功率和能耗","authors":"Muhammad Jawad Ikram, O. Abulnaja, M. Saleh, M. Al-Hashimi","doi":"10.1109/ACCS-PEIT.2017.8302995","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) are becoming im-peccable choice for the upcoming exascale computing because of improvements in performance and power efficiency. In this paper, we propose an experimental methodology for evaluating power and energy consumption of programs executing on NVIDIA Kepler GPUs. NVIDIA Tesla K40c GPU is used in the experiments as a test platform. We applied our methodology on two commonly used high-performance computing (HPC) programs, Bitonic Mergesort (a parallel sorting program), and a matrix multiplication program. Using our methodology, power profile of any program executing on NVIDIA Kepler GPUs can be obtained to measure its peak power, average power, energy, and kernel runtime.","PeriodicalId":187395,"journal":{"name":"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Measuring power and energy consumption of programs running on kepler GPUs\",\"authors\":\"Muhammad Jawad Ikram, O. Abulnaja, M. Saleh, M. Al-Hashimi\",\"doi\":\"10.1109/ACCS-PEIT.2017.8302995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics processing units (GPUs) are becoming im-peccable choice for the upcoming exascale computing because of improvements in performance and power efficiency. In this paper, we propose an experimental methodology for evaluating power and energy consumption of programs executing on NVIDIA Kepler GPUs. NVIDIA Tesla K40c GPU is used in the experiments as a test platform. We applied our methodology on two commonly used high-performance computing (HPC) programs, Bitonic Mergesort (a parallel sorting program), and a matrix multiplication program. Using our methodology, power profile of any program executing on NVIDIA Kepler GPUs can be obtained to measure its peak power, average power, energy, and kernel runtime.\",\"PeriodicalId\":187395,\"journal\":{\"name\":\"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCS-PEIT.2017.8302995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCS-PEIT.2017.8302995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于性能和功率效率的提高,图形处理单元(gpu)正在成为即将到来的百亿亿次计算的最佳选择。在本文中,我们提出了一种实验方法来评估在NVIDIA Kepler gpu上执行的程序的功耗和能耗。实验采用NVIDIA Tesla K40c GPU作为测试平台。我们将我们的方法应用于两个常用的高性能计算(HPC)程序,Bitonic归并排序(并行排序程序)和矩阵乘法程序。使用我们的方法,可以获得在NVIDIA Kepler gpu上执行的任何程序的功率概况,以测量其峰值功率,平均功率,能量和内核运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring power and energy consumption of programs running on kepler GPUs
Graphics processing units (GPUs) are becoming im-peccable choice for the upcoming exascale computing because of improvements in performance and power efficiency. In this paper, we propose an experimental methodology for evaluating power and energy consumption of programs executing on NVIDIA Kepler GPUs. NVIDIA Tesla K40c GPU is used in the experiments as a test platform. We applied our methodology on two commonly used high-performance computing (HPC) programs, Bitonic Mergesort (a parallel sorting program), and a matrix multiplication program. Using our methodology, power profile of any program executing on NVIDIA Kepler GPUs can be obtained to measure its peak power, average power, energy, and kernel runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuro-fuzzy modeling of dynamic systems in energetics using pruning methods Fabrication of LED flood light from recycle material with high quality Addressing student misinterpretations of story problems in MAST Practical microcontroller-based simulator of graphical heart sounds with disorders Upgrading power system in Egypt towards smart grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1