从量化噪声观测中估计参数

L. Finesso, L. Gerencsér, I. Kmecs
{"title":"从量化噪声观测中估计参数","authors":"L. Finesso, L. Gerencsér, I. Kmecs","doi":"10.23919/ECC.1999.7099550","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to formulate and study the problem of system identification with Gaussian noise and quantized observations. The prime examples that we study are Gaussian AR(1)-systems and the simplest Gaussian linear regression. The main results of the paper are the development of a randomization technique for the effective solution of the likelihood equation and computational experiments to demonstrate the paradoxical role of noise.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of parameters from quantized noisy observations\",\"authors\":\"L. Finesso, L. Gerencsér, I. Kmecs\",\"doi\":\"10.23919/ECC.1999.7099550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to formulate and study the problem of system identification with Gaussian noise and quantized observations. The prime examples that we study are Gaussian AR(1)-systems and the simplest Gaussian linear regression. The main results of the paper are the development of a randomization technique for the effective solution of the likelihood equation and computational experiments to demonstrate the paradoxical role of noise.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是建立和研究具有高斯噪声和量化观测的系统辨识问题。我们研究的主要例子是高斯AR(1)系统和最简单的高斯线性回归。本文的主要成果是开发了一种有效求解似然方程的随机化技术,并通过计算实验证明了噪声的矛盾作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of parameters from quantized noisy observations
The purpose of this paper is to formulate and study the problem of system identification with Gaussian noise and quantized observations. The prime examples that we study are Gaussian AR(1)-systems and the simplest Gaussian linear regression. The main results of the paper are the development of a randomization technique for the effective solution of the likelihood equation and computational experiments to demonstrate the paradoxical role of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A non-conservative approach to set membership identification for control Approximating uncertainty representations using the v-GAP metric Fault-tolerant control of a ship propulsion system using model predictive control Closed-loop identification using canonical correlation analysis Subspace-based identification of MIMO bilinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1