医学诊断专家系统:性能与表现

M. Hadzikadic
{"title":"医学诊断专家系统:性能与表现","authors":"M. Hadzikadic","doi":"10.1109/CBMS.1992.245016","DOIUrl":null,"url":null,"abstract":"A research effort is described which represents an inquiry into an important problem of automated acquisition, indexing, retrieval, and effective use of knowledge in diagnostic tasks. The principal tool is INC2, an incremental concept formation system which automates both the design and the use of diagnostic decision-support systems by a novice. The system's prediction performance is evaluated in the domains of breast cancer, primary tumor, and audiology cases, relative to the language used for representing concepts. The study includes the whole continuum of concept representations from logical to probabilistic ones. The results demonstrate that the quality of performance indeed depends on the chosen representation language.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Medical diagnostic expert systems: performance vs. representation\",\"authors\":\"M. Hadzikadic\",\"doi\":\"10.1109/CBMS.1992.245016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A research effort is described which represents an inquiry into an important problem of automated acquisition, indexing, retrieval, and effective use of knowledge in diagnostic tasks. The principal tool is INC2, an incremental concept formation system which automates both the design and the use of diagnostic decision-support systems by a novice. The system's prediction performance is evaluated in the domains of breast cancer, primary tumor, and audiology cases, relative to the language used for representing concepts. The study includes the whole continuum of concept representations from logical to probabilistic ones. The results demonstrate that the quality of performance indeed depends on the chosen representation language.<<ETX>>\",\"PeriodicalId\":197891,\"journal\":{\"name\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1992.245016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.245016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一项研究工作,它代表了对诊断任务中知识的自动获取、索引、检索和有效使用的重要问题的调查。主要工具是INC2,这是一个增量概念形成系统,可以使新手自动设计和使用诊断决策支持系统。该系统的预测性能在乳腺癌、原发性肿瘤和听力学病例领域进行评估,相对于用于表示概念的语言。该研究包括从逻辑到概率的概念表示的整个连续体。结果表明,性能的质量确实取决于所选择的表示语言
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medical diagnostic expert systems: performance vs. representation
A research effort is described which represents an inquiry into an important problem of automated acquisition, indexing, retrieval, and effective use of knowledge in diagnostic tasks. The principal tool is INC2, an incremental concept formation system which automates both the design and the use of diagnostic decision-support systems by a novice. The system's prediction performance is evaluated in the domains of breast cancer, primary tumor, and audiology cases, relative to the language used for representing concepts. The study includes the whole continuum of concept representations from logical to probabilistic ones. The results demonstrate that the quality of performance indeed depends on the chosen representation language.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local motion identification and correction schemes for ultrafast CT flow studies Graphical user interface system for automatic 3-D medical image analysis GAMEES II: an environment for building probabilistic expert systems based on arrays of Bayesian belief networks A methodology for the validation of image segmentation methods Shape analysis of mammographic calcifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1