AOCC-FL:基于校准补偿的对齐重叠联邦学习

Haozhao Wang, Wenchao Xu, Yunfeng Fan, Rui Li, Pan Zhou
{"title":"AOCC-FL:基于校准补偿的对齐重叠联邦学习","authors":"Haozhao Wang, Wenchao Xu, Yunfeng Fan, Rui Li, Pan Zhou","doi":"10.1109/INFOCOM53939.2023.10229011","DOIUrl":null,"url":null,"abstract":"Federated Learning enables collaboratively model training among a number of distributed devices with the coordination of a centralized server, where each device alternatively performs local gradient computation and communication to the server. FL suffers from significant performance degradation due to the excessive communication delay between the server and devices, especially when the network bandwidth of these devices is limited, which is common in edge environments. Existing methods overlap the gradient computation and communication to hide the communication latency to accelerate the FL training. However, the overlapping can also lead to an inevitable gap between the local model in each device and the global model in the server that seriously restricts the convergence rate of learning process. To address this problem, we propose a new overlapping method for FL, AOCC-FL, which aligns the local model with the global model via calibrated compensation such that the communication delay can be hidden without deteriorating the convergence performance. Theoretically, we prove that AOCC-FL admits the same convergence rate as the non-overlapping method. On both simulated and testbed experiments, we show that AOCC-FL achieves a comparable convergence rate relative to the non-overlapping method while outperforming the state-of-the-art overlapping methods.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AOCC-FL: Federated Learning with Aligned Overlapping via Calibrated Compensation\",\"authors\":\"Haozhao Wang, Wenchao Xu, Yunfeng Fan, Rui Li, Pan Zhou\",\"doi\":\"10.1109/INFOCOM53939.2023.10229011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning enables collaboratively model training among a number of distributed devices with the coordination of a centralized server, where each device alternatively performs local gradient computation and communication to the server. FL suffers from significant performance degradation due to the excessive communication delay between the server and devices, especially when the network bandwidth of these devices is limited, which is common in edge environments. Existing methods overlap the gradient computation and communication to hide the communication latency to accelerate the FL training. However, the overlapping can also lead to an inevitable gap between the local model in each device and the global model in the server that seriously restricts the convergence rate of learning process. To address this problem, we propose a new overlapping method for FL, AOCC-FL, which aligns the local model with the global model via calibrated compensation such that the communication delay can be hidden without deteriorating the convergence performance. Theoretically, we prove that AOCC-FL admits the same convergence rate as the non-overlapping method. On both simulated and testbed experiments, we show that AOCC-FL achieves a comparable convergence rate relative to the non-overlapping method while outperforming the state-of-the-art overlapping methods.\",\"PeriodicalId\":387707,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM53939.2023.10229011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过中央服务器的协调,联邦学习支持在多个分布式设备之间进行协作式模型训练,其中每个设备交替执行本地梯度计算并与服务器通信。由于服务器和设备之间的通信延迟过大,特别是当这些设备的网络带宽有限时(这在边缘环境中很常见),FL的性能会显著下降。现有的方法将梯度计算与通信重叠,以隐藏通信延迟,从而加快FL训练速度。但是,重叠也会导致每个设备中的局部模型与服务器中的全局模型之间不可避免地存在差距,严重制约了学习过程的收敛速度。为了解决这个问题,我们提出了一种新的FL重叠方法,AOCC-FL,该方法通过校准补偿将局部模型与全局模型对齐,从而在不降低收敛性能的情况下隐藏通信延迟。从理论上证明了AOCC-FL具有与非重叠方法相同的收敛速度。在模拟和试验台实验中,我们表明AOCC-FL相对于非重叠方法实现了相当的收敛速度,同时优于最先进的重叠方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AOCC-FL: Federated Learning with Aligned Overlapping via Calibrated Compensation
Federated Learning enables collaboratively model training among a number of distributed devices with the coordination of a centralized server, where each device alternatively performs local gradient computation and communication to the server. FL suffers from significant performance degradation due to the excessive communication delay between the server and devices, especially when the network bandwidth of these devices is limited, which is common in edge environments. Existing methods overlap the gradient computation and communication to hide the communication latency to accelerate the FL training. However, the overlapping can also lead to an inevitable gap between the local model in each device and the global model in the server that seriously restricts the convergence rate of learning process. To address this problem, we propose a new overlapping method for FL, AOCC-FL, which aligns the local model with the global model via calibrated compensation such that the communication delay can be hidden without deteriorating the convergence performance. Theoretically, we prove that AOCC-FL admits the same convergence rate as the non-overlapping method. On both simulated and testbed experiments, we show that AOCC-FL achieves a comparable convergence rate relative to the non-overlapping method while outperforming the state-of-the-art overlapping methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
i-NVMe: Isolated NVMe over TCP for a Containerized Environment One Shot for All: Quick and Accurate Data Aggregation for LPWANs Joint Participation Incentive and Network Pricing Design for Federated Learning Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption Melody: Toward Resource-Efficient Packet Header Vector Encoding on Programmable Switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1