图检索的深度神经匹配模型

Kunal Goyal, Utkarsh Gupta, A. De, Soumen Chakrabarti
{"title":"图检索的深度神经匹配模型","authors":"Kunal Goyal, Utkarsh Gupta, A. De, Soumen Chakrabarti","doi":"10.1145/3397271.3401216","DOIUrl":null,"url":null,"abstract":"Graph retrieval from a large corpus of graphs has a wide variety of applications, e.g., sentence retrieval using words and dependency parse trees for question answering, image retrieval using scene graphs, and molecule discovery from a set of existing molecular graphs. In such graph search applications, nodes, edges and associated features bear distinctive physical significance. Therefore, a unified, trainable search model that efficiently returns corpus graphs that are highly relevant to a query graph has immense potential impact. In this paper, we present an effective, feature and structure-aware, end-to-end trainable neural match scoring system for graphs. We achieve this by constructing the product graph between the query and a candidate graph in the corpus, and then conduct a family of random walks on the product graph, which are then aggregated into the match score, using a network whose parameters can be trained. Experiments show the efficacy of our method, compared to competitive baseline approaches.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Neural Matching Models for Graph Retrieval\",\"authors\":\"Kunal Goyal, Utkarsh Gupta, A. De, Soumen Chakrabarti\",\"doi\":\"10.1145/3397271.3401216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph retrieval from a large corpus of graphs has a wide variety of applications, e.g., sentence retrieval using words and dependency parse trees for question answering, image retrieval using scene graphs, and molecule discovery from a set of existing molecular graphs. In such graph search applications, nodes, edges and associated features bear distinctive physical significance. Therefore, a unified, trainable search model that efficiently returns corpus graphs that are highly relevant to a query graph has immense potential impact. In this paper, we present an effective, feature and structure-aware, end-to-end trainable neural match scoring system for graphs. We achieve this by constructing the product graph between the query and a candidate graph in the corpus, and then conduct a family of random walks on the product graph, which are then aggregated into the match score, using a network whose parameters can be trained. Experiments show the efficacy of our method, compared to competitive baseline approaches.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从大量的图语料库中检索图具有各种各样的应用,例如,使用单词和依赖解析树进行句子检索,使用场景图进行图像检索,以及从一组现有的分子图中发现分子。在这样的图搜索应用中,节点、边和相关特征具有显著的物理意义。因此,一个统一的、可训练的搜索模型,能够有效地返回与查询图高度相关的语料库图,具有巨大的潜在影响。在本文中,我们提出了一个有效的,特征和结构感知的,端到端可训练的神经匹配评分系统。我们通过在查询和语料库中的候选图之间构建产品图来实现这一点,然后使用可训练参数的网络在产品图上进行一系列随机行走,然后将其聚合成匹配分数。实验表明,与竞争对手的基线方法相比,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Matching Models for Graph Retrieval
Graph retrieval from a large corpus of graphs has a wide variety of applications, e.g., sentence retrieval using words and dependency parse trees for question answering, image retrieval using scene graphs, and molecule discovery from a set of existing molecular graphs. In such graph search applications, nodes, edges and associated features bear distinctive physical significance. Therefore, a unified, trainable search model that efficiently returns corpus graphs that are highly relevant to a query graph has immense potential impact. In this paper, we present an effective, feature and structure-aware, end-to-end trainable neural match scoring system for graphs. We achieve this by constructing the product graph between the query and a candidate graph in the corpus, and then conduct a family of random walks on the product graph, which are then aggregated into the match score, using a network whose parameters can be trained. Experiments show the efficacy of our method, compared to competitive baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1