人工神经发生:在自主机器人中的应用

O. Michel, P. Collard
{"title":"人工神经发生:在自主机器人中的应用","authors":"O. Michel, P. Collard","doi":"10.1109/TAI.1996.560453","DOIUrl":null,"url":null,"abstract":"A lot of research papers focus on the challenging problem of the combination of genetic algorithms and artificial neural networks. Developmental and molecular biology may be a source of inspiration for designing powerful artificial neurogenesis systems allowing the generation of complex modular structures. This paper describes in detail such a neurogenesis model associated with an evolutionary process and its application to the control of a mobile robot. Early results demonstrate the surprising efficiency of this methodology and give hints to continue the research towards the generation of more complex adaptive neural networks.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Artificial neurogenesis: an application to autonomous robotics\",\"authors\":\"O. Michel, P. Collard\",\"doi\":\"10.1109/TAI.1996.560453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of research papers focus on the challenging problem of the combination of genetic algorithms and artificial neural networks. Developmental and molecular biology may be a source of inspiration for designing powerful artificial neurogenesis systems allowing the generation of complex modular structures. This paper describes in detail such a neurogenesis model associated with an evolutionary process and its application to the control of a mobile robot. Early results demonstrate the surprising efficiency of this methodology and give hints to continue the research towards the generation of more complex adaptive neural networks.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

遗传算法与人工神经网络相结合这一具有挑战性的问题是许多研究论文关注的焦点。发育和分子生物学可能是设计强大的人工神经发生系统的灵感来源,允许产生复杂的模块化结构。本文详细介绍了这种与进化过程相关的神经发生模型及其在移动机器人控制中的应用。早期的结果证明了这种方法的惊人效率,并为继续研究更复杂的自适应神经网络提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neurogenesis: an application to autonomous robotics
A lot of research papers focus on the challenging problem of the combination of genetic algorithms and artificial neural networks. Developmental and molecular biology may be a source of inspiration for designing powerful artificial neurogenesis systems allowing the generation of complex modular structures. This paper describes in detail such a neurogenesis model associated with an evolutionary process and its application to the control of a mobile robot. Early results demonstrate the surprising efficiency of this methodology and give hints to continue the research towards the generation of more complex adaptive neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI tools in scheduling problem solving: a solver based on a "well-behaved" restriction of TCSPs A deliberative and reactive diagnosis agent based on logic programming Subdefinite models as a variety of constraint programming Oz Scheduler: a workbench for scheduling problems Automatic scale selection as a pre-processing stage to interpreting real-world data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1