ALEA:基于基本块采样的细颗粒能量剖面

L. Mukhanov, Dimitrios S. Nikolopoulos, B. D. Supinski
{"title":"ALEA:基于基本块采样的细颗粒能量剖面","authors":"L. Mukhanov, Dimitrios S. Nikolopoulos, B. D. Supinski","doi":"10.1109/PACT.2015.16","DOIUrl":null,"url":null,"abstract":"Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energymeasurementsarehamperedbythelowpowersampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation. We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via statistical sampling, which overcomes the limitations of power sensing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and parallel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate three use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37%, an ocean modeling code by 33%, and a ray tracing code by 6% compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.","PeriodicalId":385398,"journal":{"name":"2015 International Conference on Parallel Architecture and Compilation (PACT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"ALEA: Fine-Grain Energy Profiling with Basic Block Sampling\",\"authors\":\"L. Mukhanov, Dimitrios S. Nikolopoulos, B. D. Supinski\",\"doi\":\"10.1109/PACT.2015.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energymeasurementsarehamperedbythelowpowersampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation. We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via statistical sampling, which overcomes the limitations of power sensing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and parallel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate three use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37%, an ocean modeling code by 33%, and a ray tracing code by 6% compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.\",\"PeriodicalId\":385398,\"journal\":{\"name\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2015.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

能源效率是所有当代计算系统的基本要求。因此,我们需要工具来测量计算系统的能耗,并了解工作负载如何影响它。最近的重大研究工作是针对使用车载传感器或外部仪器对生产计算系统进行直接功率测量。这些直接的方法反过来又指导了软件技术的研究,通过工作量分配和扩展来减少能源消耗。不幸的是,直接能量测量受到功率传感器的低功率采样频率的阻碍。功率传感的粗粒度限制了我们对系统中如何分配功率的理解,以及我们通过工作负载分配优化能源效率的能力。我们提出了ALEA,一种使用概率方法在基本块粒度上测量功率和能源消耗的工具。ALEA通过统计采样提供细粒度的能量剖面,克服了功率传感仪器的局限性。与最先进的能量测量工具相比,ALEA在不牺牲精度的情况下提供更细的粒度。ALEA在英特尔和ARM平台上测试的14个顺序和并行基准测试中实现了低开销能量测量,平均错误率在1.4%到3.5%之间。抽样方法将执行时间开销限制在大约1%。因此,ALEA适用于在线能源监测和优化。最后,ALEA是一个用户空间工具,具有可移植的、与机器无关的采样方法。我们展示了ALEA的三个用例,通过改变基本块之间的功率优化策略,与高性能执行基线相比,我们将k-means计算内核的能耗降低了37%,海洋建模代码降低了33%,光线跟踪代码降低了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ALEA: Fine-Grain Energy Profiling with Basic Block Sampling
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energymeasurementsarehamperedbythelowpowersampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation. We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via statistical sampling, which overcomes the limitations of power sensing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and parallel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate three use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37%, an ocean modeling code by 33%, and a ray tracing code by 6% compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage Consolidation on SSDs: Not Always a Panacea, but Can We Ease the Pain? AREP: Adaptive Resource Efficient Prefetching for Maximizing Multicore Performance NVMMU: A Non-volatile Memory Management Unit for Heterogeneous GPU-SSD Architectures Scalable Task Scheduling and Synchronization Using Hierarchical Effects Scalable SIMD-Efficient Graph Processing on GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1