{"title":"基于PCNN的ASIN框架的超宽带介质材料表征","authors":"S. Sardar, A. Mishra","doi":"10.1109/ICAEE.2014.6838428","DOIUrl":null,"url":null,"abstract":"A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.","PeriodicalId":151739,"journal":{"name":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UWB based dielectric material characterization using PCNN based ASIN framework\",\"authors\":\"S. Sardar, A. Mishra\",\"doi\":\"10.1109/ICAEE.2014.6838428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.\",\"PeriodicalId\":151739,\"journal\":{\"name\":\"2014 International Conference on Advances in Electrical Engineering (ICAEE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advances in Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE.2014.6838428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE.2014.6838428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UWB based dielectric material characterization using PCNN based ASIN framework
A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.