用于声波能量收集装置的亥姆霍兹谐振器的改进设计

Izhar, F. Khan
{"title":"用于声波能量收集装置的亥姆霍兹谐振器的改进设计","authors":"Izhar, F. Khan","doi":"10.1109/INTELSE.2016.7475135","DOIUrl":null,"url":null,"abstract":"Helmholtz resonator (HR) is the key element of acoustic energy harvesting devices. It is used to augment or attenuate the incoming acoustic wave. In acoustic energy harvesters the objective of HR is to augment the incoming acoustic wave. In this work an improved architecture of HR is proposed for acoustic energy harvesting devices. Modeling and simulation of the HR is reported. The HR is modeled as one degree of freedom system. The proposed HR has a high pressure gain as compared to the HR used in previously developed acoustic energy harvesting devices. The proposed design for HR results in high acoustic stiffness of the air entrapped inside the Helmholtz cavity that ultimately improves the pressure gain of the HR. Moreover, for similar dimensions the resonant frequency of the proposed HR is 1693 Hz, while resonant frequency of the reported HRs is 1119.7 Hz. Furthermore, at resonance the pressure gain of the proposed HR is 56.5 dB which is quite high than the pressure gain of the reported HRs with cylindrical shape cavities that is 52.7 dB.","PeriodicalId":127671,"journal":{"name":"2016 International Conference on Intelligent Systems Engineering (ICISE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An improved design of Helmholtz resonator for acoustic energy harvesting devices\",\"authors\":\"Izhar, F. Khan\",\"doi\":\"10.1109/INTELSE.2016.7475135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helmholtz resonator (HR) is the key element of acoustic energy harvesting devices. It is used to augment or attenuate the incoming acoustic wave. In acoustic energy harvesters the objective of HR is to augment the incoming acoustic wave. In this work an improved architecture of HR is proposed for acoustic energy harvesting devices. Modeling and simulation of the HR is reported. The HR is modeled as one degree of freedom system. The proposed HR has a high pressure gain as compared to the HR used in previously developed acoustic energy harvesting devices. The proposed design for HR results in high acoustic stiffness of the air entrapped inside the Helmholtz cavity that ultimately improves the pressure gain of the HR. Moreover, for similar dimensions the resonant frequency of the proposed HR is 1693 Hz, while resonant frequency of the reported HRs is 1119.7 Hz. Furthermore, at resonance the pressure gain of the proposed HR is 56.5 dB which is quite high than the pressure gain of the reported HRs with cylindrical shape cavities that is 52.7 dB.\",\"PeriodicalId\":127671,\"journal\":{\"name\":\"2016 International Conference on Intelligent Systems Engineering (ICISE)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Systems Engineering (ICISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELSE.2016.7475135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Systems Engineering (ICISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELSE.2016.7475135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

亥姆霍兹谐振器是声波能量收集装置的关键元件。它用来增强或减弱传入的声波。在声波能量采集器中,超声的目的是增强入射声波。本文提出了一种改进的声能量收集装置的HR结构。报道了HR的建模与仿真。将人力资源系统建模为单自由度系统。与先前开发的声能收集装置中使用的HR相比,所提出的HR具有较高的压力增益。所提出的HR设计使困在亥姆霍兹腔内的空气具有较高的声学刚度,从而最终提高了HR的压力增益。此外,对于相似的尺寸,提出的HR的谐振频率为1693 Hz,而报道的HR的谐振频率为1119.7 Hz。此外,谐振时的压力增益为56.5 dB,比已有的圆柱形腔的压力增益52.7 dB要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved design of Helmholtz resonator for acoustic energy harvesting devices
Helmholtz resonator (HR) is the key element of acoustic energy harvesting devices. It is used to augment or attenuate the incoming acoustic wave. In acoustic energy harvesters the objective of HR is to augment the incoming acoustic wave. In this work an improved architecture of HR is proposed for acoustic energy harvesting devices. Modeling and simulation of the HR is reported. The HR is modeled as one degree of freedom system. The proposed HR has a high pressure gain as compared to the HR used in previously developed acoustic energy harvesting devices. The proposed design for HR results in high acoustic stiffness of the air entrapped inside the Helmholtz cavity that ultimately improves the pressure gain of the HR. Moreover, for similar dimensions the resonant frequency of the proposed HR is 1693 Hz, while resonant frequency of the reported HRs is 1119.7 Hz. Furthermore, at resonance the pressure gain of the proposed HR is 56.5 dB which is quite high than the pressure gain of the reported HRs with cylindrical shape cavities that is 52.7 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully automated assessment of Macular Edema using Optical Coherence Tomography (OCT) images Electromagnetic-based bridge energy harvester using traffic-induced bridge's vibrations and ambient wind Channel equalization for MIMO-FBMC systems Frequency response measurements based reduced order identification for dc-dc converter An active Power Factor Correction technique for bridgeless boost AC-DC converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1