磷酸钙生物陶瓷微结构的生物效应

Serge Baroth, G. Daculsi
{"title":"磷酸钙生物陶瓷微结构的生物效应","authors":"Serge Baroth, G. Daculsi","doi":"10.4303/BDA/D101113","DOIUrl":null,"url":null,"abstract":"Understanding of interactions between cells and biomaterials is a huge parameter for improving tissue engineering and regenerative medical fields. Many different materials have already been tested (including calcium phosphate ceramics) and it has been established that surface characteristic is a parameter that influences cell responses. The aim of this work was to characterize calcium phosphate discs containing various ratios of HA/?-TCP and specific microstructure. First results show that chemical composition and compression parameters modify surface materials. Secondly, cells were cultured (osteoblast-like cells MC3T3- E1) and morphology, viability, and differentiation were studied. SEM observations, mitochondrial (MTS assay), and alkaline phosphatase activity (ALP) measurements showed that osteoblasts have better viability and a higher rate of differentiation when cultured on dense surface compared to porous surface. The aim of this experiment was to contribute to the knowledge of interactions between osteoblast-like cells and microstructured calcium phosphate bioceramics pellets.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Biological Effect of Calcium Phosphate Bioceramics Microstructure\",\"authors\":\"Serge Baroth, G. Daculsi\",\"doi\":\"10.4303/BDA/D101113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding of interactions between cells and biomaterials is a huge parameter for improving tissue engineering and regenerative medical fields. Many different materials have already been tested (including calcium phosphate ceramics) and it has been established that surface characteristic is a parameter that influences cell responses. The aim of this work was to characterize calcium phosphate discs containing various ratios of HA/?-TCP and specific microstructure. First results show that chemical composition and compression parameters modify surface materials. Secondly, cells were cultured (osteoblast-like cells MC3T3- E1) and morphology, viability, and differentiation were studied. SEM observations, mitochondrial (MTS assay), and alkaline phosphatase activity (ALP) measurements showed that osteoblasts have better viability and a higher rate of differentiation when cultured on dense surface compared to porous surface. The aim of this experiment was to contribute to the knowledge of interactions between osteoblast-like cells and microstructured calcium phosphate bioceramics pellets.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4303/BDA/D101113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/BDA/D101113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

了解细胞与生物材料之间的相互作用是提高组织工程和再生医学领域的一个重要参数。已经测试了许多不同的材料(包括磷酸钙陶瓷),并且已经确定表面特性是影响细胞反应的一个参数。这项工作的目的是表征含有不同比例的HA/?-TCP和具体的微观结构。初步结果表明,化学成分和压缩参数改变了表面材料。其次,培养细胞(成骨样细胞MC3T3- E1),研究其形态、活力和分化情况。扫描电镜观察、线粒体(MTS)测定和碱性磷酸酶活性(ALP)测定表明,与多孔表面相比,在致密表面培养的成骨细胞具有更好的活力和更高的分化率。本实验的目的是帮助了解成骨细胞样细胞与微结构磷酸钙生物陶瓷颗粒之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological Effect of Calcium Phosphate Bioceramics Microstructure
Understanding of interactions between cells and biomaterials is a huge parameter for improving tissue engineering and regenerative medical fields. Many different materials have already been tested (including calcium phosphate ceramics) and it has been established that surface characteristic is a parameter that influences cell responses. The aim of this work was to characterize calcium phosphate discs containing various ratios of HA/?-TCP and specific microstructure. First results show that chemical composition and compression parameters modify surface materials. Secondly, cells were cultured (osteoblast-like cells MC3T3- E1) and morphology, viability, and differentiation were studied. SEM observations, mitochondrial (MTS assay), and alkaline phosphatase activity (ALP) measurements showed that osteoblasts have better viability and a higher rate of differentiation when cultured on dense surface compared to porous surface. The aim of this experiment was to contribute to the knowledge of interactions between osteoblast-like cells and microstructured calcium phosphate bioceramics pellets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modal Analysis of FGM Plates (Sus304/Al2O3) Using FEM Intentional Replantation with 180° Rotation of a Crown-Root Fracture as a Last Expedient: A Case Report Mechanism of Bonding in Seashell Powder Based Ceramic Composites Used for Binder-Jet 3D Printing Effect of βTricalcium Phosphate Nanoparticles Additions on the Properties of Gelatin-Chitosan Scaffolds Hydroxyapatite Scaffolds for Bone Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1