从不完全测量中初始化跟踪

C. Berger, M. Daun, W. Koch
{"title":"从不完全测量中初始化跟踪","authors":"C. Berger, M. Daun, W. Koch","doi":"10.1109/ICIF.2007.4408186","DOIUrl":null,"url":null,"abstract":"Target tracking from incomplete measurements of distinct sensors in a sensor network is a task of data fusion, present in a lot of applications. Difficulties in tracking using extended Kalman filters lead to unstable behavior, mainly caused by difficult initialization. Instead of using numerical batch-estimators, we offer an analytical approach to initialize the filter from a minimum number of observations. Additionally, we provide the possibility to estimate only sub-sets of parameters, and to reliably model resulting added uncertainties by the covariance matrix. The approach will be studied in two practical examples: 3D track initialization using bearings-only measurements and using slant-range and azimuth only. Numerical results will include performance and consistency analysis via Monte-Carlo simulations and comparison to the Cramer-Rao lower bound.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Track initialization from incomplete measurements\",\"authors\":\"C. Berger, M. Daun, W. Koch\",\"doi\":\"10.1109/ICIF.2007.4408186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking from incomplete measurements of distinct sensors in a sensor network is a task of data fusion, present in a lot of applications. Difficulties in tracking using extended Kalman filters lead to unstable behavior, mainly caused by difficult initialization. Instead of using numerical batch-estimators, we offer an analytical approach to initialize the filter from a minimum number of observations. Additionally, we provide the possibility to estimate only sub-sets of parameters, and to reliably model resulting added uncertainties by the covariance matrix. The approach will be studied in two practical examples: 3D track initialization using bearings-only measurements and using slant-range and azimuth only. Numerical results will include performance and consistency analysis via Monte-Carlo simulations and comparison to the Cramer-Rao lower bound.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从传感器网络中不同传感器的不完全测量中跟踪目标是一项数据融合任务,在许多应用中都有应用。扩展卡尔曼滤波器的跟踪困难导致其行为不稳定,其主要原因是初始化困难。而不是使用数值批估计器,我们提供了一种解析的方法来初始化从最小数量的观测滤波器。此外,我们提供了仅估计参数子集的可能性,并通过协方差矩阵可靠地建模导致添加的不确定性。该方法将在两个实际示例中进行研究:仅使用方位测量的3D轨道初始化以及仅使用倾斜范围和方位角。数值结果将包括通过蒙特卡罗模拟的性能和一致性分析以及与Cramer-Rao下界的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Track initialization from incomplete measurements
Target tracking from incomplete measurements of distinct sensors in a sensor network is a task of data fusion, present in a lot of applications. Difficulties in tracking using extended Kalman filters lead to unstable behavior, mainly caused by difficult initialization. Instead of using numerical batch-estimators, we offer an analytical approach to initialize the filter from a minimum number of observations. Additionally, we provide the possibility to estimate only sub-sets of parameters, and to reliably model resulting added uncertainties by the covariance matrix. The approach will be studied in two practical examples: 3D track initialization using bearings-only measurements and using slant-range and azimuth only. Numerical results will include performance and consistency analysis via Monte-Carlo simulations and comparison to the Cramer-Rao lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1