Jiajie Peng, Hansheng Xue, Y. Shao, Xuequn Shang, Yadong Wang, Jin Chen
{"title":"利用人类表型本体测量表型语义相似度","authors":"Jiajie Peng, Hansheng Xue, Y. Shao, Xuequn Shang, Yadong Wang, Jin Chen","doi":"10.1109/BIBM.2016.7822617","DOIUrl":null,"url":null,"abstract":"It is critical yet remains to be challenging to make right disease diagnosis based on complex clinical characteristic and heterogeneous genetic background. Recently, Human Phenotype Ontology (HPO)-based phenotype similarity has been widely used to aid disease diagnosis. However, the existing measurements are revised based on the Gene Ontology-based term similarity models, which are not optimized for human phenotype ontologies. We propose a new similarity measure called PhenoSim. Our model includes a noise reduction component to model the noisy patient phenotype data, and a path-constrained Information Content-based method for measuring phenotype semantics similarity. Evaluation tests showed that PhenoSim could improve the performance of HPO-based phenotype similarity measurement.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Measuring phenotype semantic similarity using Human Phenotype Ontology\",\"authors\":\"Jiajie Peng, Hansheng Xue, Y. Shao, Xuequn Shang, Yadong Wang, Jin Chen\",\"doi\":\"10.1109/BIBM.2016.7822617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is critical yet remains to be challenging to make right disease diagnosis based on complex clinical characteristic and heterogeneous genetic background. Recently, Human Phenotype Ontology (HPO)-based phenotype similarity has been widely used to aid disease diagnosis. However, the existing measurements are revised based on the Gene Ontology-based term similarity models, which are not optimized for human phenotype ontologies. We propose a new similarity measure called PhenoSim. Our model includes a noise reduction component to model the noisy patient phenotype data, and a path-constrained Information Content-based method for measuring phenotype semantics similarity. Evaluation tests showed that PhenoSim could improve the performance of HPO-based phenotype similarity measurement.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring phenotype semantic similarity using Human Phenotype Ontology
It is critical yet remains to be challenging to make right disease diagnosis based on complex clinical characteristic and heterogeneous genetic background. Recently, Human Phenotype Ontology (HPO)-based phenotype similarity has been widely used to aid disease diagnosis. However, the existing measurements are revised based on the Gene Ontology-based term similarity models, which are not optimized for human phenotype ontologies. We propose a new similarity measure called PhenoSim. Our model includes a noise reduction component to model the noisy patient phenotype data, and a path-constrained Information Content-based method for measuring phenotype semantics similarity. Evaluation tests showed that PhenoSim could improve the performance of HPO-based phenotype similarity measurement.