用于非线性状态估计的预训练神经网络

Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen
{"title":"用于非线性状态估计的预训练神经网络","authors":"Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen","doi":"10.1109/ICMLA.2011.118","DOIUrl":null,"url":null,"abstract":"The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pre-trained Neural Networks Used for Non-linear State Estimation\",\"authors\":\"Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen\",\"doi\":\"10.1109/ICMLA.2011.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究了假设状态和扰动的非高斯分布的非线性状态估计。后验分布和后验分布由一组选定的参数分布来描述。然后,状态转换导致分布中参数的转换。该变换由一个基于蒙特卡罗采样的离线训练神经网络来逼近。在本文中,还将提出一种构造灵活分布的方法,该分布非常适合于覆盖非线性关系的影响。该方法还可以通过将具有强非线性联系的区域包含在网络中来改进其他参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pre-trained Neural Networks Used for Non-linear State Estimation
The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1