黑海科学与创新地球观测数据框架下新的SMOS SSS地图

E. Olmedo, V. González-Gambau, A. Turiel, C. González‐Haro, Aina García-Espriu, M. Grégoire, A. Álvera-Azcárate, L. Buga, M. Rio
{"title":"黑海科学与创新地球观测数据框架下新的SMOS SSS地图","authors":"E. Olmedo, V. González-Gambau, A. Turiel, C. González‐Haro, Aina García-Espriu, M. Grégoire, A. Álvera-Azcárate, L. Buga, M. Rio","doi":"10.5194/essd-2021-364","DOIUrl":null,"url":null,"abstract":"Abstract. In the framework of the European Space Agency (ESA) regional initiative called Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS), a new dedicated Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) product is generated for the Black Sea for the years 2011–2020. Three SMOS SSS fields are retrieved and distributed: a level 2 product consisting of binned SSS in daily maps at 0.25° × 0.25° spatial resolution grid by considering ascending ((Olmedo et al., 2021b), https://doi.org/10.20350/digitalCSIC/13993) and descending ((Olmedo et al., 2021c), https://doi.org/10.20350/digitalCSIC/13995) satellite overpass directions separately; a level 3 product ((Olmedo et al., 2021d), https://doi.org/10.20350/digitalCSIC/13996) consisting of binned SSS in 9-day maps at 0.25° × 0.25° grid by combining as cending and descending satellite overpass directions; and a level 4 product ((Olmedo et al., 2021e), https://doi.org/10.20350/digitalCSIC/13997) consisting of daily maps at 0.05 × 0.0505° that are computed by merging the level 3 SSS product with Sea Surface Temperature (SST) maps. The generation of SMOS SSS fields in the Black Sea requires the use of enhanced data processing algorithms for improving the Brightness Temperatures in the region since this basin is typically strongly affected by Radio Frequency Interference (RFI) sources which hinders the retrieval of salinity. Here, we describe the algorithms introduced to improve the quality of the salinity retrieval in this basin. The validation of the EO4SIBS SMOS SSS products is performed by: i) comparing the EO4SIBS SMOS SSS products with near-to-surface salinity measurements provided by in situ measurements; ii) assessing the geophysical consistency of the products by comparing them with a model and other satellite salinity measurements; iii) computing maps of SSS errors by using Correlated Triple Collocation analysis. The accuracy of the EO4SIBS SMOS SSS products depend on the time period and on the product level. The accuracy in the period 2016–2020 is better than in 2011–2015 and it is as follows for the different products: i) Level 2 ascending: 1.85 / 1.50 psu (in 2011–2015 / 2016–2020); Level 2 descending: 2.95 1.95 psu; ii) Level 3: 0.7 / 0.5 psu; and iii) Level 4: 0.6 / 0.4 psu.\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea\",\"authors\":\"E. Olmedo, V. González-Gambau, A. Turiel, C. González‐Haro, Aina García-Espriu, M. Grégoire, A. Álvera-Azcárate, L. Buga, M. Rio\",\"doi\":\"10.5194/essd-2021-364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In the framework of the European Space Agency (ESA) regional initiative called Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS), a new dedicated Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) product is generated for the Black Sea for the years 2011–2020. Three SMOS SSS fields are retrieved and distributed: a level 2 product consisting of binned SSS in daily maps at 0.25° × 0.25° spatial resolution grid by considering ascending ((Olmedo et al., 2021b), https://doi.org/10.20350/digitalCSIC/13993) and descending ((Olmedo et al., 2021c), https://doi.org/10.20350/digitalCSIC/13995) satellite overpass directions separately; a level 3 product ((Olmedo et al., 2021d), https://doi.org/10.20350/digitalCSIC/13996) consisting of binned SSS in 9-day maps at 0.25° × 0.25° grid by combining as cending and descending satellite overpass directions; and a level 4 product ((Olmedo et al., 2021e), https://doi.org/10.20350/digitalCSIC/13997) consisting of daily maps at 0.05 × 0.0505° that are computed by merging the level 3 SSS product with Sea Surface Temperature (SST) maps. The generation of SMOS SSS fields in the Black Sea requires the use of enhanced data processing algorithms for improving the Brightness Temperatures in the region since this basin is typically strongly affected by Radio Frequency Interference (RFI) sources which hinders the retrieval of salinity. Here, we describe the algorithms introduced to improve the quality of the salinity retrieval in this basin. The validation of the EO4SIBS SMOS SSS products is performed by: i) comparing the EO4SIBS SMOS SSS products with near-to-surface salinity measurements provided by in situ measurements; ii) assessing the geophysical consistency of the products by comparing them with a model and other satellite salinity measurements; iii) computing maps of SSS errors by using Correlated Triple Collocation analysis. The accuracy of the EO4SIBS SMOS SSS products depend on the time period and on the product level. The accuracy in the period 2016–2020 is better than in 2011–2015 and it is as follows for the different products: i) Level 2 ascending: 1.85 / 1.50 psu (in 2011–2015 / 2016–2020); Level 2 descending: 2.95 1.95 psu; ii) Level 3: 0.7 / 0.5 psu; and iii) Level 4: 0.6 / 0.4 psu.\\n\",\"PeriodicalId\":326085,\"journal\":{\"name\":\"Earth System Science Data Discussions\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2021-364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要在欧洲空间局(ESA)名为“黑海科学与创新地球观测数据”(EO4SIBS)的区域倡议框架下,为2011-2020年黑海生成了一个新的专用土壤湿度和海洋盐度(SMOS)海面盐度(SSS)产品。检索并分布三个SMOS SSS场:分别考虑上升((Olmedo et al., 2021b), https://doi.org/10.20350/digitalCSIC/13993)和下降((Olmedo et al., 2021c), https://doi.org/10.20350/digitalCSIC/13995)卫星立交桥方向,得到0.25°× 0.25°空间分辨率栅格日图中分块SSS的二级产品;3级产品(Olmedo et al., 2021d), https://doi.org/10.20350/digitalCSIC/13996),通过结合上升和下降的卫星立交桥方向,在0.25°× 0.25°网格的9天地图中组成分层SSS;第4级产品(Olmedo et al., 2021e), https://doi.org/10.20350/digitalCSIC/13997)由0.05 × 0.0505°的每日地图组成,这些地图是通过合并第3级SSS产品和海表温度(SST)地图计算得到的。在黑海产生SMOS SSS场需要使用改进的数据处理算法来改善该地区的亮度温度,因为该盆地通常受到射频干扰(RFI)源的强烈影响,阻碍了盐度的检索。在此,我们介绍了提高该盆地盐度检索质量的算法。EO4SIBS SMOS SSS产品的验证是通过以下方式进行的:i)将EO4SIBS SMOS SSS产品与现场测量提供的近地表盐度测量结果进行比较;Ii)通过将产品与模式和其他卫星盐度测量值进行比较,评估产品的地球物理一致性;iii)利用关联三重搭配分析法计算SSS误差图。EO4SIBS SMOS SSS产品的精度取决于时间周期和产品级别。2016-2020年期间的精度优于2011-2015年,不同产品的精度如下:i)二级上升:1.85 / 1.50 psu (2011-2015 / 2016-2020);二级下降:2.95 1.95 psu;ii)三级:0.7 / 0.5 psu;iii) 4级:0.6 / 0.4 psu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea
Abstract. In the framework of the European Space Agency (ESA) regional initiative called Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS), a new dedicated Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) product is generated for the Black Sea for the years 2011–2020. Three SMOS SSS fields are retrieved and distributed: a level 2 product consisting of binned SSS in daily maps at 0.25° × 0.25° spatial resolution grid by considering ascending ((Olmedo et al., 2021b), https://doi.org/10.20350/digitalCSIC/13993) and descending ((Olmedo et al., 2021c), https://doi.org/10.20350/digitalCSIC/13995) satellite overpass directions separately; a level 3 product ((Olmedo et al., 2021d), https://doi.org/10.20350/digitalCSIC/13996) consisting of binned SSS in 9-day maps at 0.25° × 0.25° grid by combining as cending and descending satellite overpass directions; and a level 4 product ((Olmedo et al., 2021e), https://doi.org/10.20350/digitalCSIC/13997) consisting of daily maps at 0.05 × 0.0505° that are computed by merging the level 3 SSS product with Sea Surface Temperature (SST) maps. The generation of SMOS SSS fields in the Black Sea requires the use of enhanced data processing algorithms for improving the Brightness Temperatures in the region since this basin is typically strongly affected by Radio Frequency Interference (RFI) sources which hinders the retrieval of salinity. Here, we describe the algorithms introduced to improve the quality of the salinity retrieval in this basin. The validation of the EO4SIBS SMOS SSS products is performed by: i) comparing the EO4SIBS SMOS SSS products with near-to-surface salinity measurements provided by in situ measurements; ii) assessing the geophysical consistency of the products by comparing them with a model and other satellite salinity measurements; iii) computing maps of SSS errors by using Correlated Triple Collocation analysis. The accuracy of the EO4SIBS SMOS SSS products depend on the time period and on the product level. The accuracy in the period 2016–2020 is better than in 2011–2015 and it is as follows for the different products: i) Level 2 ascending: 1.85 / 1.50 psu (in 2011–2015 / 2016–2020); Level 2 descending: 2.95 1.95 psu; ii) Level 3: 0.7 / 0.5 psu; and iii) Level 4: 0.6 / 0.4 psu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1