高光谱图像中均匀区域的联合光谱解混与聚类识别

Eleftheria A. Mylona, O. Sykioti, K. Koutroumbas, A. Rontogiannis
{"title":"高光谱图像中均匀区域的联合光谱解混与聚类识别","authors":"Eleftheria A. Mylona, O. Sykioti, K. Koutroumbas, A. Rontogiannis","doi":"10.1109/IGARSS.2015.7326295","DOIUrl":null,"url":null,"abstract":"In this paper a joint spectral unmixing and clustering approach for the identification of homogeneous regions in hyperspectral images is proposed. The endmembers required in the unmixing stage are manually selected based on the most significant principal components of the image at hand. Each pixel is decomposed as a linear combination of the endmembers and is represented by the vector of the coefficients of its corresponding linear combination. The clustering stage utilizes the complete-link hierarchical agglomerative clustering algorithm in a layer-wise fashion in order to retrieve the optimal clusters, based on the latter pixels representation. Experiments conducted on real images support the high-quality performance of the proposed approach.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint spectral unmixing and clustering for identifying homogeneous regions in hyperspectral images\",\"authors\":\"Eleftheria A. Mylona, O. Sykioti, K. Koutroumbas, A. Rontogiannis\",\"doi\":\"10.1109/IGARSS.2015.7326295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a joint spectral unmixing and clustering approach for the identification of homogeneous regions in hyperspectral images is proposed. The endmembers required in the unmixing stage are manually selected based on the most significant principal components of the image at hand. Each pixel is decomposed as a linear combination of the endmembers and is represented by the vector of the coefficients of its corresponding linear combination. The clustering stage utilizes the complete-link hierarchical agglomerative clustering algorithm in a layer-wise fashion in order to retrieve the optimal clusters, based on the latter pixels representation. Experiments conducted on real images support the high-quality performance of the proposed approach.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7326295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于高光谱图像中均匀区域识别的联合光谱分解和聚类方法。解混阶段所需的端元是根据手头图像中最重要的主成分手动选择的。每个像素被分解为端元的线性组合,并由其相应线性组合的系数向量表示。聚类阶段以分层方式利用完全链接分层聚类算法,以便根据后一种像素表示检索最佳聚类。在真实图像上进行的实验支持了该方法的高质量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint spectral unmixing and clustering for identifying homogeneous regions in hyperspectral images
In this paper a joint spectral unmixing and clustering approach for the identification of homogeneous regions in hyperspectral images is proposed. The endmembers required in the unmixing stage are manually selected based on the most significant principal components of the image at hand. Each pixel is decomposed as a linear combination of the endmembers and is represented by the vector of the coefficients of its corresponding linear combination. The clustering stage utilizes the complete-link hierarchical agglomerative clustering algorithm in a layer-wise fashion in order to retrieve the optimal clusters, based on the latter pixels representation. Experiments conducted on real images support the high-quality performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1